
Article history:
Received 7 March 2024
Revised 25 April 2024
Accepted 02 June 2024
Published online 01 July 2024

Artificial Intelligence Applications

 And Innovations Vol. 1 No. 3 (2024)

Design of a Greedy Algorithm for Non-Uniform Space Partitioning across

Homogeneous FPGAs in Molecular Simulation

Faezeh Sadat. Mozneb1 , Kambiz. Rahbar1* , Parvaneh. Asghari2 , Parand. Akhlaghi1

1 South Tehran Branch, Islamic Azad University, Tehran, Iran
2 Central Tehran Branch, Islamic Azad University, Tehran, Iran

* Corresponding author email address: k.rahbar@azad.ac.ir

A r t i c l e I n f o A B S T R A C T

Article type:

Original Research

How to cite this article:

Mozneb, F. S., Rahbar, K., Asghari,

P., & Akhlaghi, P. (2024). Design of

a Greedy Algorithm for Non-Uniform

Space Partitioning across

Homogeneous FPGAs in Molecular

Simulation. Artificial Intelligence

Applications and Innovations, 1(3), 9-

19.

https://doi.org/10.61838/jaiai.1.3.2

© 2024 the authors. This is an open

access article under the terms of the

Creative Commons Attribution-

NonCommercial 4.0 International (CC

BY-NC 4.0) License.

Efficient partitioning of the atomic space among parallel FPGAs is crucial for

accelerating molecular simulations. Existing research has primarily focused on

uniform partitioning, assuming a homogeneous distribution of atoms. However, in

scenarios with non-uniform atomic distributions, these approaches may lead to

suboptimal performance. This study investigates the impact of non-uniform atom

distributions on molecular simulation performance across parallel FPGAs. We

propose a novel space partitioning scheme that optimizes the distribution of atomic

space among FPGAs, taking into account the spatial heterogeneity of atoms. Our

evaluation demonstrates that the proposed scheme consistently outperforms

uniform partitioning in terms of simulation speed across various spatial dimensions

and atom counts, particularly in scenarios with non-uniform atom distributions.

Keywords: Molecular simulation, Acceleration, Parallelization, Greedy algorithm.

1. Introduction

olecular simulations on a single computer often

demand extensive computational time, spanning

months or even years. To expedite these simulations,

auxiliary processors like GPUs and FPGAs are employed.

Previous studies [1, 2] have shown that using a single GPU

or FPGA (or a small number of them) does not yield

significant speedup compared to execution on a CPU.

Consequently, parallelization becomes essential. However,

the number of GPUs that can be utilized on a single

computer is limited (typically two, with a maximum of

fewer than 15). In contrast, a virtually unlimited number of

FPGAs can be connected to a computer via a network. As a

result, the use of parallel FPGAs has emerged as a

prevalent method for accelerating molecular simulations.

An FPGA consists of input blocks, output blocks, and

logic blocks. Before using an FPGA, its logic blocks are

programmed to perform specific logical computations.

During operation, input data enters the FPGA through input

blocks, undergoes the programmed computations, and exits

through output blocks.

M

https://doi.org/10.61838/jaiai.1.3.2
http://creativecommons.org/licenses/by-nc/4.0
http://creativecommons.org/licenses/by-nc/4.0
https://crossmark.crossref.org/dialog/?doi=10.61838/jaiai.1.3.2
http://creativecommons.org/licenses/by-nc/4.0

 Mozneb et al. Artificial Intelligence Applications and Innovations 1:3 (2024) 9-19

10

The capacity or size of an FPGA refers to the number of

logic blocks it contains. Larger FPGAs can implement

more complex logic circuits but are also more expensive.

When performing molecular simulations on parallel

FPGAs, the partitioning of atomic space among them

becomes crucial. Existing research has primarily focused

on scenarios where atoms are uniformly (or near-

uniformly) distributed within the simulation space.

However, our research has revealed that when atoms are

non-uniformly distributed, existing partitioning schemes

may not achieve acceptable simulation speeds. To address

this issue, we propose a novel partitioning scheme that

optimizes the distribution of space among parallel FPGAs,

aiming to achieve high simulation speeds. Our evaluations

demonstrate that the proposed scheme consistently

outperforms previous approaches across various numbers

of parallel FPGAs, particularly in scenarios with non-

uniform atom distributions.

The remainder of this paper is organized as follows: In

Section 2, we delve into a novel problem in the realm of

simulation space partitioning and formally define it.

Section 3 reviews prior work on accelerating molecular

simulations. In Section 4, we design a near-optimal

algorithm to address this problem. Section 5 evaluates the

proposed algorithm in various scenarios and discusses the

evaluation results. Then, Section 6 discusses the challenges

of this research. Finally, we conclude this study in Section

7.

2. Problem Analysis and Formulation

To execute a molecular simulation on a processor or

FPGA, existing research suggests partitioning the atomic

space into small cubic cells [3]. The length of each side of

these cubes is equal to the cutoff radius, which represents

the distance within which an atom can exert an attractive

force on its neighboring atom. In this study, we consider

the size of each cubic cell to be fixed and equal to the

cutoff radius. Previous research has shown that any other

cell size would lead to reduced simulation speed and

efficiency [3].

Now, if we intend to execute a molecular simulation on

multiple FPGAs in parallel, we first need to divide the

atomic space into small cubic cells. Following this, we

need to partition the atomic space into sub-regions, each

consisting of a number of cells. Then, each sub-region,

along with its cells, is assigned to a separate FPGA. Each

of the parallel FPGAs in the system processes a sub-region

along with its internal cells.

2.1. Analysis in terms of the Number of Assigned Atoms

To investigate the problem, let's first consider the atoms

depicted in Figure 1(a), which are uniformly distributed.

This figure is drawn in two dimensions with a small

number of atoms for better understanding and visualization,

but the same concept can be extended to the actual three-

dimensional case with a much larger number of atoms. To

divide the space of these atoms among a number of FPGAs

of equal size, we can simply divide the space into equal-

sized sub-regions (as shown in Figure 1(b)) and assign each

sub-region to an FPGA. This method of partitioning the

simulation space, employed in existing schemes, is referred

to as the uniform partitioning algorithm.

(a) Representation of atoms (b) Division of space among

FPGAs

Figure 1. An example of atoms uniformly distributed in space

Now, consider the atoms depicted in Figure 2(a), which

are non-uniformly distributed. To divide the space of these

atoms among a number of FPGAs of equal size, one

approach is to divide the space into equal-sized sub-regions

(as shown in Figure 2(b)) and assign each sub-region to an

FPGA. In this case, we observe that each FPGA is allocated

the same area of simulation space, and the number of cells

assigned to each FPGA is approximately equal. However,

some FPGAs process only a few atoms, while others need

to process a much larger number of atoms during the

simulation. This disparity in the number of atoms assigned

to FPGAs leads to significant differences in the processing

time required at each time step across FPGAs. This

difference, in turn, increases the overall processing time

required by the system at each time step. The reason is that

at any given time step, the total processing time for the

entire system is determined by the processing time of the

slowest FPGA.

 Mozneb et al. Artificial Intelligence Applications and Innovations 1:3 (2024) 9-19

11

(a) Representation of atoms (b) Equal division of

space among FPGAs

(c) Unequal division of space among FPGAs

Figure 2. An example of atoms non-uniformly distributed in

space

To divide the space of these atoms among a number of

FPGAs of equal size, another approach is to partition the

space into sub-regions of varying sizes (as shown in Figure

2(c)) such that each sub-region contains an equal number of

atoms. If we assign these sub-regions to FPGAs, then each

FPGA will not be allocated the same area of simulation

space, and the number of cells assigned to each FPGA will

not be equal. However, all FPGAs will process an equal

number of atoms. This equality in the number of atoms

assigned to FPGAs ensures that the processing time

required at each time step across FPGAs is very similar.

Consequently, compared to Figure 2(b), the processing

time required at each time step in the slowest FPGA will be

reduced. Therefore, the total processing time for the entire

system will decrease.

2.2. Analysis in terms of the Number of Neighboring

Atoms Assigned to Different FPGAs

When partitioning the simulation space among FPGAs,

if two neighboring atoms are assigned to different FPGAs,

then at each time step, those two FPGAs need to exchange

the positions of these two atoms, and this process must be

repeated at every time step. Now, if we have a large

number of such neighboring atoms assigned to different

FPGAs, the communication traffic and latency between

FPGAs will increase excessively, significantly slowing

down the simulation execution.

Therefore, another point to consider when partitioning

the simulation space among FPGAs is to limit the number

of neighboring atoms assigned to different FPGAs to an

acceptable level.

2.3. Problem Definition

Based on the discussions in this section, we conclude

that the following two quantities need to be minimized

when assigning the simulation space to parallel FPGAs: 1)

The maximum number of atoms assigned to a single FPGA,

2) The number of pairs of neighboring atoms assigned to

different FPGAs.

Now, we define the following new problem in the

context of partitioning the atomic space among FPGAs:

Problem 1: Consider a three-dimensional space of

atoms called A. Assume we have N FPGAs with equal

capacity M. Partition space A among the FPGAs such that

the following two quantities are minimized, resulting in the

minimum total processing time for atoms in those FPGAs

at each time step: 1) The maximum number of atoms

assigned to a single FPGA, 2) The number of pairs of

neighboring atoms assigned to different FPGAs.

2.4. Problem Requirements

The space assigned to each FPGA should be a simple

rectangular cuboid to simplify the geometric calculations

that the FPGA needs to perform during molecular

simulation execution, thereby reducing execution time. If

the space assigned to each FPGA were an irregular shape

with many sides, the number of comparisons required for

geometric calculations within the FPGA would increase,

leading to longer execution times.

A general assumption in executing molecular

simulations on parallel FPGAs is that the operational space

of each FPGA is programmed and stored as a simple

rectangular cuboid with 12 sides in the internal circuitry of

that FPGA. If we were to increase the number of sides of

the space, this general assumption would be violated, and

we would be forced to modify and complicate the internal

structure and calculations of the FPGA.

To balance the computational load among FPGAs, the

number of atoms assigned to different FPGAs should be

approximately equal. Moreover, the complexity of the

space partitioning algorithm should be manageable.

To implement the defined problem, a central computer is

needed to manage the FPGAs and perform

 Mozneb et al. Artificial Intelligence Applications and Innovations 1:3 (2024) 9-19

12

the space partitioning calculations centrally. Performing

space partitioning by the FPGAs themselves in a distributed

manner would increase the algorithm's complexity and

reduce its accuracy. Additionally, it would consume

internal FPGA blocks.

3. Related Work

Numerous software programs have been developed for

molecular simulations on computers. Among the most

widely used are NAMD [4], GROMACS [5], and OpenMM

[6]. However, these programs are limited to execution on

CPUs and GPUs, which may not offer the highest

execution speeds. This limitation makes them suitable for

simulations with a small number of atoms (less than

10,000) and short simulation durations (less than 10

seconds), where execution times are acceptable. But for

longer simulations with a larger number of atoms, the

execution time can extend to months or even years, which

is impractical. Research such as [1, 7] has shown that this

lengthy execution time persists even when running on a

powerful GPU.

To address this issue, some researchers have proposed

schemes to execute molecular simulations on FPGAs.

However, their results indicated that the long execution

times remained even with a powerful FPGA. Subsequently,

other researchers proposed schemes to execute molecular

simulations on multiple parallel FPGAs. Their results

demonstrated that this approach could significantly reduce

execution times. However, the degree of reduction depends

on the number of FPGAs used and the optimality of the

partitioning scheme.

Researchers in [8] proposed a scheme for implementing

the LAMMPS molecular simulation software on FPGAs.

Their proposed scheme, implemented on two FPGA

accelerators, achieved a 13x speedup compared to the

software implementation on a CPU.

The book [9] discusses the details of implementing

molecular simulations on FPGAs and demonstrates how to

design a processing pipeline in an FPGA for this purpose.

Researchers in [10] implemented molecular simulations

using OpenCL in the C language on an FPGA called

Stratix. Their evaluation showed that their FPGA

implementation was about 4.6 times faster than execution

on a CPU.

In [11], researchers implemented the molecular

simulation algorithm of OpenMM on four FPGAs, but this

study was only experimental and did not achieve

satisfactory performance.

Researchers in [12] fully implemented the molecular

simulation algorithm on a single FPGA. Additionally,

researchers in [2] experimented with molecular simulations

on FPGAs. In [13], a hardware design based on FPGAs was

proposed to accelerate mRNA molecule simulations.

Researchers in [14] implemented parts of the molecular

simulation algorithm on Intel FPGAs using OpenCL, which

can program FPGAs. Their evaluation showed that using

FPGAs offered shorter execution times compared to using

GPUs in molecular simulations.

The Fourier transform is a computationally intensive

part of molecular simulations. Researchers in [15]

investigated the reduction in execution time achieved by

implementing the three-dimensional Fourier transform on

FPGAs.

Researchers in [16] examined the impact of bandwidth

between FPGAs on the execution time of molecular

simulations when using multiple parallel FPGAs. They

proposed solutions to balance the bandwidth among

FPGAs.

In [17], researchers explored scenarios where the

number of FPGAs used reached tens and proposed

solutions for implementing molecular simulation

algorithms on dozens of FPGAs.

Researchers in [2] proposed a scheme for fully

implementing molecular simulations on FPGAs with

minimal use of the host computer. Their proposed scheme,

implemented on a single FPGA, achieved a simulation rate

of 1.4 microseconds of molecular simulation per day. This

performance was about twice as good as that of a

comparable GPU.

In [18], researchers implemented molecular simulations

on a Xilinx-U200 FPGA. They proposed a data transfer

strategy that eliminates latency between the FPGA's

internal and external memory. Their evaluation showed that

their FPGA implementation was about 1.2 times faster than

the implementation on an NVIDIA-28080ti GPU.

All previous studies on molecular simulation execution

on parallel FPGAs have only considered scenarios where

atoms are uniformly (or near-uniformly) distributed in the

simulation space. Therefore, they divide the simulation

space equally among FPGAs. Our investigation in this

research revealed that if atoms are non-uniformly

distributed in the simulation space, equal division of the

simulation space among FPGAs is not optimal, leading to

unequal distribution of atoms among FPGAs. This non-

uniformity results in an unequal distribution

 Mozneb et al. Artificial Intelligence Applications and Innovations 1:3 (2024) 9-19

13

of computational load among parallel FPGAs.

Consequently, at each time step of the molecular simulation

algorithm, the fastest FPGA has to wait for the slowest

FPGA to finish its computations before the next time step

can begin for all FPGAs. This reduces the simulation speed

compared to the optimal case.

To date, none of the existing schemes have considered

the non-uniform distribution of atoms in the simulation

space or proposed a partitioning scheme for such scenarios.

This research is the first work in this area.

4. Proposed Scheme

In this section, we present the proposed scheme for

solving the problem and discuss its characteristics.

We assume we have n FPGAs of the same model and

size. This assumption implies that the number of logic

blocks within the FPGAs is equal, and they all have the

same speed and capabilities. This assumption not only

reduces the complexity of calculations related to atomic

space partitioning but also simplifies the management of

parallel FPGAs, ultimately increasing the final speed of the

molecular simulation.

We assume a central computer connected to all FPGAs

in the system, capable of managing them. Initially, this

central computer reads the atomic space specifications and

initial atom positions from an input file and then executes

the proposed space partitioning algorithm. Subsequently, it

assigns each resulting sub-region, along with its atoms, to a

separate FPGA. After this, the FPGAs in the system can

begin executing the molecular simulation.

We assume that the molecular simulation is fully

executed on the parallel FPGAs, and the computer

connected to the FPGAs is not involved in any part of the

simulation. Our assumption is that the computer connected

to the FPGAs is only used for setup, management, and

control of the FPGAs.

The type of atoms is not relevant to the space

partitioning algorithm. Atoms can be of the same type or of

different types within the simulation space.

4.1. Proposed Algorithm

To find the optimal solution for the defined problem, all

possible partitioning states of the simulation space with all

possible sizes need to be calculated and evaluated. This

process has exponential complexity and requires a very

long execution time. Therefore, we design a polynomial-

time complexity algorithm to solve the problem, which can

achieve a near-optimal solution. The number of space

partitioning states that the proposed algorithm needs to

examine is much smaller than the optimal algorithm.

Consequently, its complexity will be much lower.

Algorithm 1: (Molecular Simulation Space

Partitioning)

1. Let A be the area of the atomic space in the

simulation.

2. Let n be the number of parallel FPGAs available.

3. Let B = A/n

4. Divide the atomic space into small sub-regions

with area B using the uniform partitioning

algorithm.

5. Calculate the score of the current partitioning and

store it in variable g.

6. Let S be the current partitioning scheme.

7. Let c = false

8. Repeat the following steps until c is true:

a. Let c = true

b. In partitioning scheme S, find all possible

combinations of two neighboring sub-

regions of S that, when combined,

produce only one rectangular cuboid

shape, i.e., no concave shape is produced.

c. For each combination of sub-regions, do

the following:

i. Calculate the score of the space

partitioning in that state.

ii. If the obtained score is higher

than g, then let c = false, store

the partitioning score in g, and

set parameter S to the

partitioning scheme in that state.

9. Return the partitioning scheme S as the output of

the algorithm.

10. End.

The use of condition c allows us to determine in each

iteration of the inner loop of the algorithm whether

continuing that loop is beneficial or not. If in one iteration

of the inner loop, no new combination of sub-regions is

found with a higher score, then we know that continuing

that loop is no longer useful, and we have reached the best

possible solution within the capabilities of this algorithm.

4.2. Definition of the Score Function

 Mozneb et al. Artificial Intelligence Applications and Innovations 1:3 (2024) 9-19

14

For a partitioning state of the simulation space to be

optimal, the following objectives should be minimized in

that state: 1) The maximum number of atoms assigned to a

single FPGA, 2) The number of pairs of neighboring atoms

in the entire simulation space that are assigned to different

FPGAs.

To express these two objectives as numerical values for

score calculation, we design the following function. In this

function, we calculate two parameters named t and u. Since

increasing the output score requires decreasing these two

parameters, we define the output of the function as the

inverse of these two parameters.

Function 1: Calculating the score for a partitioning

state of the simulation space

1. Let g = 0

2. For all FPGAs in the system, find the FPGA with

the maximum number of assigned atoms.

3. Set parameter t to the number of atoms assigned to

that FPGA.

4. Set parameter u to the number of pairs of

neighboring atoms in the entire simulation space

that are assigned to different FPGAs.

5. Let g = 1 / (t + u)

6. Return the value of g as the output of the

algorithm.

7. End.

4.3. Complexity Analysis

Now consider the proposed algorithm. In each iteration

of the main loop, all possible combinations of two

neighboring sub-regions need to be tested. Since the

maximum number of sub-regions in this algorithm can be

equal to the parameter n (i.e., the number of FPGAs), the

number of possible combinations of two neighboring sub-

regions is equal to (n(n-1))/2. Since the main loop of the

program needs to be repeated n times in the worst case, the

complexity of the proposed algorithm is n * (n(n-1))/2,

which is of polynomial order.

Compared to the optimal solution algorithm, the

proposed algorithm does not test all possible partitioning

states of the space. Instead, it significantly reduces the

number of states that need to be tested. In this research, we

analyzed the problem and the characteristics of a good

partitioning in the simulation space and gained a good

understanding of them. Using this knowledge, we designed

the proposed algorithm to only explore partitioning states

that need to be tested and ignore unnecessary states. By

testing a much smaller number of partitioning states

compared to the optimal solution algorithm, the proposed

algorithm achieves a near-optimal partitioning of the

simulation space.

5. Evaluation of the Proposed Scheme

We have implemented a software program in Java to

execute the proposed algorithm, which runs the algorithm

and displays the space partitioning results graphically. The

numerical evaluation outputs in this section are the same

two parameters calculated in the score function. These

outputs were obtained by running the algorithm in various

molecular simulation scenarios. We compared the

numerical results of the proposed algorithm with the

uniform partitioning algorithm.

5.1. Evaluation Scenarios

To evaluate the proposed algorithm, we define several

scenarios and specify the parameters for each of these

scenarios. Table 1 describes these scenarios. The goal of

scenario one is to evaluate the performance of the proposed

algorithm in various space sizes while keeping the density

of atoms in the space constant. The goal of scenario two is

to evaluate the performance of the proposed algorithm in

various atom densities within a space of fixed size. The

goal of scenario three is to evaluate the performance of the

proposed algorithm under various conditions of uniformity

in atom distribution while keeping the space size and atom

density constant. The goal of scenario four is to evaluate

the performance of the proposed algorithm for different

numbers of FPGAs in the system.

The outputs of our evaluations include the following: 1)

Execution time of the algorithm on a personal computer, 2)

Maximum number of atoms assigned to a single FPGA, 3)

Variance of the number of atoms assigned to each FPGA,

4) Number of pairs of neighboring atoms in the entire

simulation space assigned to different FPGAs, 5) Number

of FPGAs required in the simulation, determined by the

number of resulting sub-regions

The number of required FPGAs differs from the number

of available FPGAs in the system. Initially, we have a

certain number of FPGAs in the system among which we

want to divide the atomic space. However, after executing

the space partitioning algorithm, the same number of sub-

regions may be identified, or the number of sub-regions

may be slightly less than the number of

 Mozneb et al. Artificial Intelligence Applications and Innovations 1:3 (2024) 9-19

15

available FPGAs. If the latter occurs, it means the

algorithm has determined that fewer FPGAs are needed.

This happens in a space with sub-regions devoid of atoms,

where using an FPGA for their simulation is unnecessary.

Nevertheless, it is expected that the number of required

FPGAs will always be equal to or very close to the number

of available FPGAs.

Table 1. Defined Scenarios for Evaluating the Proposed Algorithm and Their Parameters

Input Parameter in

Evaluation

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Atom Space Size 50Å×50Å×50Å

100Å×100Å×100Å

200Å×200Å×200Å

400Å×400Å×400Å

800Å×800Å×800Å

200Å×200Å×200Å 200Å×200Å×200Å 200Å×200Å×200Å

Number of Atoms in the

Space

1000000 1000000, 500000, 2000000,

4000000, 8000000

1000000 1000000

How Atoms are Spread

in Space

Uniform Uniform to Slightly Non-Uniform Uniform to Completely Non-

Uniform

Completely Non-Uniform to

Uniform

Cutoff Radius 9Å 9Å 9Å 9Å

Cell Size 9Å×9Å×9Å 9Å×9Å×9Å 9Å×9Å×9Å 9Å×9Å×9Å

Number of FPGAs 5, 10, 20, 40, 80 20 20 20

5.2. Numerical Results

Figure 3 compares the execution time of the proposed

algorithm with the uniform partitioning algorithm. The

execution time of scenario one using the uniform

partitioning algorithm is less than two seconds, while the

execution time of the proposed algorithm reaches several

seconds. The execution time of the proposed algorithm

increases with the size of the space because the number of

possible combinations of sub-regions increases with the

size of the space. Although the execution time of the

uniform partitioning algorithm also increases with the size

of the space, the slope of this graph is less than that of the

proposed algorithm. However, since the proposed

algorithm is executed only once for space partitioning

before the simulation begins, an execution time of a few

seconds is acceptable. In contrast, using the proposed

algorithm instead of the uniform partitioning algorithm

leads to optimal space partitioning, resulting in a reduction

of hours or even days in the execution time of the

simulation by parallel FPGAs.

Figure 3. Execution Time of Space Partitioning Algorithms

vs. Space Size (Scenario 1)

Figure 4 illustrates the maximum number of atoms

assigned to a single FPGA as a function of space size. The

number of atoms in the space is 1,000,000, and the number

of FPGAs is 20. In the optimal scenario where atoms are

equally divided among FPGAs, each FPGA would receive

50,000 atoms. Any number in the graph of Figure 4 that

exceeds this value indicates a deviation from the optimal

state. However, since the atoms are non-uniformly

distributed in space and efforts are made to minimize the

number of pairs of neighboring atoms assigned to different

 Mozneb et al. Artificial Intelligence Applications and Innovations 1:3 (2024) 9-19

16

FPGAs, it is natural to expect some deviation from the

optimal state.

The uniform partitioning algorithm does not consider the

location of atoms and divides the space solely based on

area. As a result, the numbers obtained for this algorithm in

Figure 4 show a significant deviation from the optimal

value. In contrast, the proposed algorithm has been able to

achieve near-optimal results with a smaller deviation from

the optimal value. The graph in Figure 4 shows that the

deviation from the optimal value increases with the size of

the space. This characteristic is because atoms in a smaller

space are closer to a uniform distribution and cannot

deviate much from it. However, the same number of atoms

in a larger space can be further apart and deviate more from

the uniform distribution.

Figure 4. Maximum Number of Atoms Assigned to a Single

FPGA vs. Space Size (Scenario 1)

Figure 5 shows the number of neighboring atom pairs in

the simulation space that are assigned to two different

FPGAs. The equal-size partitioning algorithm makes no

attempt to reduce this output, while the proposed algorithm

attempts to reduce both the outputs of Figure 4 and Figure

5.

Figure 5. Number of neighboring atom pairs assigned to two

different FPGAs as a function of space size (Scenario 1)

Figure 6 shows the number of FPGAs required for the

simulation in Scenario 2. This graph shows that the

proposed algorithm has been able to reduce the number of

required FPGAs by combining some sub-sections when

partitioning the space between FPGAs. However, this

reduction has not occurred when the number of atoms is

high. The reason is that if the number of atoms is high

relative to the area of space, then no empty space can be

found in that space and all sub-sections are full of atoms.

As a result, the sub-sections cannot be combined and all

available FPGAs in the system will be used.

Figure 6. Number of required FPGAs as a function of space

size (Scenario 1)

Figure 7 and Figure 8 show two parameters in Scenario

2 that the proposed algorithm tries to reduce both of them.

In both of these figures, the graph of the proposed

algorithm is closer to the optimal value compared to the

equal-size division algorithm. As the number of atoms

increases, it is natural that these two graphs increase. As the

number of atoms in the same space

 Mozneb et al. Artificial Intelligence Applications and Innovations 1:3 (2024) 9-19

17

increases, the uneven distribution of atoms must be closer

to the uniform distribution state. Therefore, the difference

of the diagram from the optimal solution decreases.

Figure 7. Maximum number of atoms assigned to an FPGA as

a function of the number of atoms in the space (Scenario 2)

Figure 8. Number of neighboring atom pairs assigned to two

different FPGAs as a function of the number of atoms in the space

(Scenario 2)

Figure 9 shows the maximum number of atoms assigned

to an FPGA in Scenario 3, while the size of the space and

the number of atoms are constant. In this figure, as the

degree of uniformity in the distribution of atoms decreases,

the results of the equal division algorithm deviate further

from the optimal state, and the superiority of the proposed

algorithm compared to the equal division algorithm

becomes more apparent.

Figure 9. Maximum number of atoms assigned to an FPGA as

a function of the distribution of atoms in space (Scenario 3)

Figure 10 shows the number of neighboring atom pairs

assigned to two different FPGAs in scenario three, where

the degree of uniformity in the distribution of atoms is

different in each run of the space partitioning algorithm. In

this figure, the graph of the proposed algorithm is closer to

the optimal value compared to the equal division algorithm.

Also, as the degree of uniformity in the distribution of

atoms decreases, the results of the equal division algorithm

and the proposed algorithm get closer to the optimal state.

The reason is that if the atoms are not evenly distributed

and are clustered in a few small sub-sections in the space,

then assigning those few sub-sections to a small number of

FPGAs can largely prevent neighboring atoms from being

placed in different FPGAs.

Figure 10. Number of neighboring atom pairs assigned to two

different FPGAs as a function of the distribution of atoms in space

(Scenario 3)

6. Discussion

Field-Programmable Gate Arrays (FPGAs) offer

tremendous advantages in data processing due to their

hardware-based operational paradigm, often showing

improved speed compared to traditional processors. Their

small size and economic viability encourage widespread

use, thus making them an appealing platform for parallel

molecular simulations.

However, two main hurdles hinder efficient

parallelization on clusters of FPGAs: uneven load

balancing and the communication overhead between

FPGAs. The work herein addresses these problems through

a novel algorithmic approach cantered around

minimization.

While using high-speed interconnection networks may

appear to be a straightforward way to reduce inter-FPGA

communication delays, its feasibility decreases as the

number of FPGAs increases. To be useful, large-scale

molecular simulations require hundreds of FPGAs, making

high-speed interconnects too costly. Thus, algorithmic

inter-FPGA communication reduction is a more practical

and less expensive approach.

 Mozneb et al. Artificial Intelligence Applications and Innovations 1:3 (2024) 9-19

18

The efficiency of the proposed partitioning algorithm

depends on the distribution of particles in the simulation

space. While it obviously decreases the communication

between FPGAs for certain spatial distributions, its impact

can be smaller for other distributions. Notably, such less-

optimal distributions often represent those cases where

existing algorithms struggle to achieve comparable

performance improvements. This suggests that the

presented approach is a solid solution, particularly for

intricate particle distributions.

7. Conclusion

In this research, we have defined a new problem in the

partitioning of molecular simulation space, which is tasked

with dividing the space of atoms in a way that the atoms

may be placed uniformly or non-uniformly in that space.

The goal of this problem is to partition the space in such a

way that the execution time of the molecular simulation is

minimized. This problem tries to minimize two partitioning

parameters to achieve this goal. Then, we proposed an

algorithm with polynomial execution time that can reach a

near-optimal solution by searching for various states of

partitioning.

Also, we have implemented a software tool to run this

algorithm, which executes the proposed algorithm and

displays the partitioning result graphically. The evaluations

performed with this software tool show the better

performance of the proposed algorithm compared to the

equal size division algorithm.

Authors’ Contributions

All authors equally contributed to this study.

Declaration

In order to correct and improve the academic writing of

our paper, we have used the language model ChatGPT.

Transparency Statement

Data are available for research purposes upon reasonable

request to the corresponding author.

Acknowledgments

We would like to express our gratitude to all individuals

helped us to do the project.

Declaration of Interest

The authors declare that they have no conflict of

interest. The authors also declare that they have no known

competing financial interests or personal relationships that

could have appeared to influence the work reported in this

paper.

Funding

According to the authors, this article has no financial

support.

Ethical Considerations

The study placed a high emphasis on ethical

considerations. Informed consent obtained from all

participants, ensuring they are fully aware of the nature of

the study and their role in it. Confidentiality strictly

maintained, with data anonymized to protect individual

privacy. The study adhered to the ethical guidelines for

research with human subjects as outlined in the Declaration

of Helsinki.

References

[1] S. Páll et al., "Heterogeneous parallelization and acceleration

of molecular dynamics simulations in GROMACS," The

Journal of Chemical Physics, vol. 153, no. 13, 2020, doi:

10.1063/5.0018516.

[2] C. Yang et al., "Molecular dynamics range-limited force

evaluation optimized for FPGAs," in 2019 IEEE 30th

International Conference on Application-specific Systems,

Architectures and Processors (ASAP), 2019, pp. 263-271,

doi: 10.1109/ASAP.2019.00016.

[3] C. Wu et al., "Optimized mappings for symmetric range-

limited molecular force calculations on FPGAs," in 2022

32nd International Conference on Field-Programmable

Logic and Applications (FPL), 2022, pp. 101-108, doi:

10.1109/FPL57034.2022.00026.

[4] J. C. Phillips et al., "Scalable molecular dynamics with

NAMD," Journal of Computational Chemistry, vol. 26, no.

16, pp. 1781-1802, 2005, doi: 10.1002/jcc.20289.

[5] M. J. Abraham et al., "GROMACS: High performance

molecular simulations through multi-level parallelism from

laptops to supercomputers," SoftwareX, vol. 1, pp. 19-25,

2015, doi: 10.1016/j.softx.2015.06.001.

[6] P. Eastman et al., "OpenMM 7: Rapid development of high

performance algorithms for molecular dynamics," PLoS

Computational Biology, vol. 13, no. 7, p. e1005659, 2017,

doi: 10.1371/journal.pcbi.1005659.

[7] D. Lu et al., "86 PFLOPS deep potential molecular dynamics

simulation of 100 million atoms with ab initio accuracy,"

Computer Physics Communications, vol. 259, p. 107624,

2021, doi: 10.1016/j.cpc.2020.107624.

[8] S. Kasap and K. Benkrid, "Parallel processor design and

implementation for molecular dynamics simulations on a

FPGA-based supercomputer," Journal of

 Mozneb et al. Artificial Intelligence Applications and Innovations 1:3 (2024) 9-19

19

Computers, vol. 7, no. 6, pp. 1312-1328, 2012, doi:

10.4304/jcp.7.6.1312-1328.

[9] M. A. Khan, M. Chiu, and M. C. Herbordt, "FPGA-

accelerated molecular dynamics," in High-Performance

Computing Using FPGAs, 2013, pp. 105-135.

[10] H. M. Waidyasooriya, M. Hariyama, and K. Kasahara, "An

FPGA accelerator for molecular dynamics simulation using

OpenCL," International Journal of Networked and

Distributed Computing, vol. 5, no. 1, pp. 52-61, 2017, doi:

10.2991/ijndc.2017.5.1.6.

[11] C. Pascoe, L. Stewart, B. W. Sherman, V. Sachdeva, and M.

W. Herbordt, "Execution of complete molecular dynamics

simulations on multiple FPGAs," in 2020 IEEE High

Performance Extreme Computing Conference (HPEC), 2020,

pp. 1-2, doi: 10.1109/HPEC43674.2020.9286155.

[12] C. Yang et al., "Fully integrated FPGA molecular dynamics

simulations," in Proceedings of the International Conference

for High Performance Computing, Networking, Storage and

Analysis, 2019, pp. 1-31, doi: 10.1145/3295500.3356179.

[13] D. Shallom, D. Naiger, S. Weiss, and T. Tuller,

"Accelerating whole-cell simulations of mRNA translation

using a dedicated hardware," ACS Synthetic Biology, vol. 10,

no. 12, pp. 3489-3506, 2021, doi:

10.1021/acssynbio.1c00415.

[14] L. C. Stewart, C. Pascoe, B. W. Sherman, M. Herbordt, and

V. Sachdeva, "Particle mesh Ewald for molecular dynamics

in OpenCL on an FPGA cluster," in arXiv preprint

arXiv:2009.12617, 2020, doi:

10.1109/FCCM51124.2021.00055.

[15] A. Ramaswami, T. Kenter, T. D. Kühne, and C. Plessl,

"Efficient ab-initio molecular dynamic simulations by

offloading fast Fourier transformations to FPGAs," in 2020

30th International Conference on Field-Programmable

Logic and Applications (FPL), 2020, pp. 353-354, doi:

10.1109/FPL50879.2020.00065.

[16] C. Wu, T. Geng, C. Yang, V. Sachdeva, W. Sherman, and M.

Herbordt, "A Communication-Efficient Multi-Chip Design

for Range-Limited Molecular Dynamics," in 2020 IEEE

High Performance Extreme Computing Conference (HPEC),

2020, pp. 9-19, doi: 10.1109/HPEC43674.2020.9286146.

[17] C. Wu et al., "Upgrade of FPGA range-limited molecular

dynamics to handle hundreds of processors," in 2021 IEEE

29th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM), 2021,

pp. 142-151, doi: 10.1109/FCCM51124.2021.00024.

[18] M. Yuan et al., "FPGA-accelerated Tersoff multi-body

potential for molecular dynamics simulations," in

International Symposium on Applied Reconfigurable

Computing, 2022, pp. 17-31, doi: 10.1007/978-3-031-19983-

7_2.

