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Efficient partitioning of the atomic space among parallel FPGAs is crucial for 

accelerating molecular simulations. Existing research has primarily focused on 

uniform partitioning, assuming a homogeneous distribution of atoms. However, in 

scenarios with non-uniform atomic distributions, these approaches may lead to 

suboptimal performance. This study investigates the impact of non-uniform atom 

distributions on molecular simulation performance across parallel FPGAs. We 

propose a novel space partitioning scheme that optimizes the distribution of atomic 

space among FPGAs, taking into account the spatial heterogeneity of atoms. Our 

evaluation demonstrates that the proposed scheme consistently outperforms 

uniform partitioning in terms of simulation speed across various spatial dimensions 

and atom counts, particularly in scenarios with non-uniform atom distributions. 
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1. Introduction 

olecular simulations on a single computer often 

demand extensive computational time, spanning 

months or even years. To expedite these simulations, 

auxiliary processors like GPUs and FPGAs are employed. 

Previous studies [1, 2] have shown that using a single GPU 

or FPGA (or a small number of them) does not yield 

significant speedup compared to execution on a CPU. 

Consequently, parallelization becomes essential. However, 

the number of GPUs that can be utilized on a single 

computer is limited (typically two, with a maximum of 

fewer than 15). In contrast, a virtually unlimited number of 

FPGAs can be connected to a computer via a network. As a 

result, the use of parallel FPGAs has emerged as a 

prevalent method for accelerating molecular simulations. 

An FPGA consists of input blocks, output blocks, and 

logic blocks. Before using an FPGA, its logic blocks are 

programmed to perform specific logical computations. 

During operation, input data enters the FPGA through input 

blocks, undergoes the programmed computations, and exits 

through output blocks. 

M 
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The capacity or size of an FPGA refers to the number of 

logic blocks it contains. Larger FPGAs can implement 

more complex logic circuits but are also more expensive. 

When performing molecular simulations on parallel 

FPGAs, the partitioning of atomic space among them 

becomes crucial. Existing research has primarily focused 

on scenarios where atoms are uniformly (or near-

uniformly) distributed within the simulation space. 

However, our research has revealed that when atoms are 

non-uniformly distributed, existing partitioning schemes 

may not achieve acceptable simulation speeds. To address 

this issue, we propose a novel partitioning scheme that 

optimizes the distribution of space among parallel FPGAs, 

aiming to achieve high simulation speeds. Our evaluations 

demonstrate that the proposed scheme consistently 

outperforms previous approaches across various numbers 

of parallel FPGAs, particularly in scenarios with non-

uniform atom distributions. 

The remainder of this paper is organized as follows: In 

Section 2, we delve into a novel problem in the realm of 

simulation space partitioning and formally define it. 

Section 3 reviews prior work on accelerating molecular 

simulations. In Section 4, we design a near-optimal 

algorithm to address this problem. Section 5 evaluates the 

proposed algorithm in various scenarios and discusses the 

evaluation results. Then, Section 6 discusses the challenges 

of this research. Finally, we conclude this study in Section 

7. 

2. Problem Analysis and Formulation 

To execute a molecular simulation on a processor or 

FPGA, existing research suggests partitioning the atomic 

space into small cubic cells [3]. The length of each side of 

these cubes is equal to the cutoff radius, which represents 

the distance within which an atom can exert an attractive 

force on its neighboring atom. In this study, we consider 

the size of each cubic cell to be fixed and equal to the 

cutoff radius. Previous research has shown that any other 

cell size would lead to reduced simulation speed and 

efficiency [3]. 

Now, if we intend to execute a molecular simulation on 

multiple FPGAs in parallel, we first need to divide the 

atomic space into small cubic cells. Following this, we 

need to partition the atomic space into sub-regions, each 

consisting of a number of cells. Then, each sub-region, 

along with its cells, is assigned to a separate FPGA. Each 

of the parallel FPGAs in the system processes a sub-region 

along with its internal cells. 

2.1. Analysis in terms of the Number of Assigned Atoms 

To investigate the problem, let's first consider the atoms 

depicted in Figure 1(a), which are uniformly distributed. 

This figure is drawn in two dimensions with a small 

number of atoms for better understanding and visualization, 

but the same concept can be extended to the actual three-

dimensional case with a much larger number of atoms. To 

divide the space of these atoms among a number of FPGAs 

of equal size, we can simply divide the space into equal-

sized sub-regions (as shown in Figure 1(b)) and assign each 

sub-region to an FPGA. This method of partitioning the 

simulation space, employed in existing schemes, is referred 

to as the uniform partitioning algorithm. 

 

   
(a) Representation of atoms    (b) Division of space among 

FPGAs 

Figure 1. An example of atoms uniformly distributed in space 

 

Now, consider the atoms depicted in Figure 2(a), which 

are non-uniformly distributed. To divide the space of these 

atoms among a number of FPGAs of equal size, one 

approach is to divide the space into equal-sized sub-regions 

(as shown in Figure 2(b)) and assign each sub-region to an 

FPGA. In this case, we observe that each FPGA is allocated 

the same area of simulation space, and the number of cells 

assigned to each FPGA is approximately equal. However, 

some FPGAs process only a few atoms, while others need 

to process a much larger number of atoms during the 

simulation. This disparity in the number of atoms assigned 

to FPGAs leads to significant differences in the processing 

time required at each time step across FPGAs. This 

difference, in turn, increases the overall processing time 

required by the system at each time step. The reason is that 

at any given time step, the total processing time for the 

entire system is determined by the processing time of the 

slowest FPGA. 

 



 
 Mozneb et al.                                                                                                                      Artificial Intelligence Applications and Innovations 1:3 (2024) 9-19 

 

 

 
 

11 

  
(a) Representation of atoms    (b) Equal division of 

space among FPGAs 

 
(c) Unequal division of space among FPGAs 

Figure 2. An example of atoms non-uniformly distributed in 

space 

 

To divide the space of these atoms among a number of 

FPGAs of equal size, another approach is to partition the 

space into sub-regions of varying sizes (as shown in Figure 

2(c)) such that each sub-region contains an equal number of 

atoms. If we assign these sub-regions to FPGAs, then each 

FPGA will not be allocated the same area of simulation 

space, and the number of cells assigned to each FPGA will 

not be equal. However, all FPGAs will process an equal 

number of atoms. This equality in the number of atoms 

assigned to FPGAs ensures that the processing time 

required at each time step across FPGAs is very similar. 

Consequently, compared to Figure 2(b), the processing 

time required at each time step in the slowest FPGA will be 

reduced. Therefore, the total processing time for the entire 

system will decrease. 

2.2. Analysis in terms of the Number of Neighboring 

Atoms Assigned to Different FPGAs 

When partitioning the simulation space among FPGAs, 

if two neighboring atoms are assigned to different FPGAs, 

then at each time step, those two FPGAs need to exchange 

the positions of these two atoms, and this process must be 

repeated at every time step. Now, if we have a large 

number of such neighboring atoms assigned to different 

FPGAs, the communication traffic and latency between 

FPGAs will increase excessively, significantly slowing 

down the simulation execution. 

Therefore, another point to consider when partitioning 

the simulation space among FPGAs is to limit the number 

of neighboring atoms assigned to different FPGAs to an 

acceptable level. 

2.3. Problem Definition 

Based on the discussions in this section, we conclude 

that the following two quantities need to be minimized 

when assigning the simulation space to parallel FPGAs: 1) 

The maximum number of atoms assigned to a single FPGA, 

2) The number of pairs of neighboring atoms assigned to 

different FPGAs. 

Now, we define the following new problem in the 

context of partitioning the atomic space among FPGAs: 

Problem 1: Consider a three-dimensional space of 

atoms called A. Assume we have N FPGAs with equal 

capacity M. Partition space A among the FPGAs such that 

the following two quantities are minimized, resulting in the 

minimum total processing time for atoms in those FPGAs 

at each time step: 1) The maximum number of atoms 

assigned to a single FPGA, 2) The number of pairs of 

neighboring atoms assigned to different FPGAs. 

2.4. Problem Requirements 

The space assigned to each FPGA should be a simple 

rectangular cuboid to simplify the geometric calculations 

that the FPGA needs to perform during molecular 

simulation execution, thereby reducing execution time. If 

the space assigned to each FPGA were an irregular shape 

with many sides, the number of comparisons required for 

geometric calculations within the FPGA would increase, 

leading to longer execution times. 

A general assumption in executing molecular 

simulations on parallel FPGAs is that the operational space 

of each FPGA is programmed and stored as a simple 

rectangular cuboid with 12 sides in the internal circuitry of 

that FPGA. If we were to increase the number of sides of 

the space, this general assumption would be violated, and 

we would be forced to modify and complicate the internal 

structure and calculations of the FPGA. 

To balance the computational load among FPGAs, the 

number of atoms assigned to different FPGAs should be 

approximately equal. Moreover, the complexity of the 

space partitioning algorithm should be manageable. 

To implement the defined problem, a central computer is 

needed to manage the FPGAs and perform 
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the space partitioning calculations centrally. Performing 

space partitioning by the FPGAs themselves in a distributed 

manner would increase the algorithm's complexity and 

reduce its accuracy. Additionally, it would consume 

internal FPGA blocks. 

3. Related Work 

Numerous software programs have been developed for 

molecular simulations on computers. Among the most 

widely used are NAMD [4], GROMACS [5], and OpenMM 

[6]. However, these programs are limited to execution on 

CPUs and GPUs, which may not offer the highest 

execution speeds. This limitation makes them suitable for 

simulations with a small number of atoms (less than 

10,000) and short simulation durations (less than 10 

seconds), where execution times are acceptable. But for 

longer simulations with a larger number of atoms, the 

execution time can extend to months or even years, which 

is impractical. Research such as [1, 7] has shown that this 

lengthy execution time persists even when running on a 

powerful GPU. 

To address this issue, some researchers have proposed 

schemes to execute molecular simulations on FPGAs. 

However, their results indicated that the long execution 

times remained even with a powerful FPGA. Subsequently, 

other researchers proposed schemes to execute molecular 

simulations on multiple parallel FPGAs. Their results 

demonstrated that this approach could significantly reduce 

execution times. However, the degree of reduction depends 

on the number of FPGAs used and the optimality of the 

partitioning scheme. 

Researchers in [8] proposed a scheme for implementing 

the LAMMPS molecular simulation software on FPGAs. 

Their proposed scheme, implemented on two FPGA 

accelerators, achieved a 13x speedup compared to the 

software implementation on a CPU. 

The book [9] discusses the details of implementing 

molecular simulations on FPGAs and demonstrates how to 

design a processing pipeline in an FPGA for this purpose. 

Researchers in [10] implemented molecular simulations 

using OpenCL in the C language on an FPGA called 

Stratix. Their evaluation showed that their FPGA 

implementation was about 4.6 times faster than execution 

on a CPU. 

In [11], researchers implemented the molecular 

simulation algorithm of OpenMM on four FPGAs, but this 

study was only experimental and did not achieve 

satisfactory performance. 

Researchers in [12] fully implemented the molecular 

simulation algorithm on a single FPGA. Additionally, 

researchers in [2] experimented with molecular simulations 

on FPGAs. In [13], a hardware design based on FPGAs was 

proposed to accelerate mRNA molecule simulations. 

Researchers in [14] implemented parts of the molecular 

simulation algorithm on Intel FPGAs using OpenCL, which 

can program FPGAs. Their evaluation showed that using 

FPGAs offered shorter execution times compared to using 

GPUs in molecular simulations. 

The Fourier transform is a computationally intensive 

part of molecular simulations. Researchers in [15] 

investigated the reduction in execution time achieved by 

implementing the three-dimensional Fourier transform on 

FPGAs. 

Researchers in [16] examined the impact of bandwidth 

between FPGAs on the execution time of molecular 

simulations when using multiple parallel FPGAs. They 

proposed solutions to balance the bandwidth among 

FPGAs. 

In [17], researchers explored scenarios where the 

number of FPGAs used reached tens and proposed 

solutions for implementing molecular simulation 

algorithms on dozens of FPGAs. 

Researchers in [2] proposed a scheme for fully 

implementing molecular simulations on FPGAs with 

minimal use of the host computer. Their proposed scheme, 

implemented on a single FPGA, achieved a simulation rate 

of 1.4 microseconds of molecular simulation per day. This 

performance was about twice as good as that of a 

comparable GPU. 

In [18], researchers implemented molecular simulations 

on a Xilinx-U200 FPGA. They proposed a data transfer 

strategy that eliminates latency between the FPGA's 

internal and external memory. Their evaluation showed that 

their FPGA implementation was about 1.2 times faster than 

the implementation on an NVIDIA-28080ti GPU. 

All previous studies on molecular simulation execution 

on parallel FPGAs have only considered scenarios where 

atoms are uniformly (or near-uniformly) distributed in the 

simulation space. Therefore, they divide the simulation 

space equally among FPGAs. Our investigation in this 

research revealed that if atoms are non-uniformly 

distributed in the simulation space, equal division of the 

simulation space among FPGAs is not optimal, leading to 

unequal distribution of atoms among FPGAs. This non-

uniformity results in an unequal distribution 
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of computational load among parallel FPGAs. 

Consequently, at each time step of the molecular simulation 

algorithm, the fastest FPGA has to wait for the slowest 

FPGA to finish its computations before the next time step 

can begin for all FPGAs. This reduces the simulation speed 

compared to the optimal case. 

To date, none of the existing schemes have considered 

the non-uniform distribution of atoms in the simulation 

space or proposed a partitioning scheme for such scenarios. 

This research is the first work in this area. 

4. Proposed Scheme 

In this section, we present the proposed scheme for 

solving the problem and discuss its characteristics. 

We assume we have n FPGAs of the same model and 

size. This assumption implies that the number of logic 

blocks within the FPGAs is equal, and they all have the 

same speed and capabilities. This assumption not only 

reduces the complexity of calculations related to atomic 

space partitioning but also simplifies the management of 

parallel FPGAs, ultimately increasing the final speed of the 

molecular simulation. 

We assume a central computer connected to all FPGAs 

in the system, capable of managing them. Initially, this 

central computer reads the atomic space specifications and 

initial atom positions from an input file and then executes 

the proposed space partitioning algorithm. Subsequently, it 

assigns each resulting sub-region, along with its atoms, to a 

separate FPGA. After this, the FPGAs in the system can 

begin executing the molecular simulation. 

We assume that the molecular simulation is fully 

executed on the parallel FPGAs, and the computer 

connected to the FPGAs is not involved in any part of the 

simulation. Our assumption is that the computer connected 

to the FPGAs is only used for setup, management, and 

control of the FPGAs. 

The type of atoms is not relevant to the space 

partitioning algorithm. Atoms can be of the same type or of 

different types within the simulation space. 

4.1. Proposed Algorithm 

To find the optimal solution for the defined problem, all 

possible partitioning states of the simulation space with all 

possible sizes need to be calculated and evaluated. This 

process has exponential complexity and requires a very 

long execution time. Therefore, we design a polynomial-

time complexity algorithm to solve the problem, which can 

achieve a near-optimal solution. The number of space 

partitioning states that the proposed algorithm needs to 

examine is much smaller than the optimal algorithm. 

Consequently, its complexity will be much lower. 

Algorithm 1: (Molecular Simulation Space 

Partitioning) 

1. Let A be the area of the atomic space in the 

simulation. 

2. Let n be the number of parallel FPGAs available. 

3. Let B = A/n 

4. Divide the atomic space into small sub-regions 

with area B using the uniform partitioning 

algorithm. 

5. Calculate the score of the current partitioning and 

store it in variable g. 

6. Let S be the current partitioning scheme. 

7. Let c = false 

8. Repeat the following steps until c is true:  

a. Let c = true 

b. In partitioning scheme S, find all possible 

combinations of two neighboring sub-

regions of S that, when combined, 

produce only one rectangular cuboid 

shape, i.e., no concave shape is produced. 

c. For each combination of sub-regions, do 

the following: 

i. Calculate the score of the space 

partitioning in that state. 

ii. If the obtained score is higher 

than g, then let c = false, store 

the partitioning score in g, and 

set parameter S to the 

partitioning scheme in that state. 

9. Return the partitioning scheme S as the output of 

the algorithm. 

10. End. 

 

The use of condition c allows us to determine in each 

iteration of the inner loop of the algorithm whether 

continuing that loop is beneficial or not. If in one iteration 

of the inner loop, no new combination of sub-regions is 

found with a higher score, then we know that continuing 

that loop is no longer useful, and we have reached the best 

possible solution within the capabilities of this algorithm. 

4.2. Definition of the Score Function 



 
 Mozneb et al.                                                                                                                      Artificial Intelligence Applications and Innovations 1:3 (2024) 9-19 

 

 

 
 

14 

For a partitioning state of the simulation space to be 

optimal, the following objectives should be minimized in 

that state: 1) The maximum number of atoms assigned to a 

single FPGA, 2) The number of pairs of neighboring atoms 

in the entire simulation space that are assigned to different 

FPGAs. 

To express these two objectives as numerical values for 

score calculation, we design the following function. In this 

function, we calculate two parameters named t and u. Since 

increasing the output score requires decreasing these two 

parameters, we define the output of the function as the 

inverse of these two parameters. 

Function 1: Calculating the score for a partitioning 

state of the simulation space 

1. Let g = 0 

2. For all FPGAs in the system, find the FPGA with 

the maximum number of assigned atoms. 

3. Set parameter t to the number of atoms assigned to 

that FPGA. 

4. Set parameter u to the number of pairs of 

neighboring atoms in the entire simulation space 

that are assigned to different FPGAs. 

5. Let g = 1 / (t + u) 

6. Return the value of g as the output of the 

algorithm. 

7. End. 

4.3. Complexity Analysis 

Now consider the proposed algorithm. In each iteration 

of the main loop, all possible combinations of two 

neighboring sub-regions need to be tested. Since the 

maximum number of sub-regions in this algorithm can be 

equal to the parameter n (i.e., the number of FPGAs), the 

number of possible combinations of two neighboring sub-

regions is equal to (n(n-1))/2. Since the main loop of the 

program needs to be repeated n times in the worst case, the 

complexity of the proposed algorithm is n * (n(n-1))/2, 

which is of polynomial order. 

Compared to the optimal solution algorithm, the 

proposed algorithm does not test all possible partitioning 

states of the space. Instead, it significantly reduces the 

number of states that need to be tested. In this research, we 

analyzed the problem and the characteristics of a good 

partitioning in the simulation space and gained a good 

understanding of them. Using this knowledge, we designed 

the proposed algorithm to only explore partitioning states 

that need to be tested and ignore unnecessary states. By 

testing a much smaller number of partitioning states 

compared to the optimal solution algorithm, the proposed 

algorithm achieves a near-optimal partitioning of the 

simulation space. 

5. Evaluation of the Proposed Scheme 

We have implemented a software program in Java to 

execute the proposed algorithm, which runs the algorithm 

and displays the space partitioning results graphically. The 

numerical evaluation outputs in this section are the same 

two parameters calculated in the score function. These 

outputs were obtained by running the algorithm in various 

molecular simulation scenarios. We compared the 

numerical results of the proposed algorithm with the 

uniform partitioning algorithm. 

5.1. Evaluation Scenarios 

To evaluate the proposed algorithm, we define several 

scenarios and specify the parameters for each of these 

scenarios. Table 1 describes these scenarios. The goal of 

scenario one is to evaluate the performance of the proposed 

algorithm in various space sizes while keeping the density 

of atoms in the space constant. The goal of scenario two is 

to evaluate the performance of the proposed algorithm in 

various atom densities within a space of fixed size. The 

goal of scenario three is to evaluate the performance of the 

proposed algorithm under various conditions of uniformity 

in atom distribution while keeping the space size and atom 

density constant. The goal of scenario four is to evaluate 

the performance of the proposed algorithm for different 

numbers of FPGAs in the system. 

The outputs of our evaluations include the following: 1) 

Execution time of the algorithm on a personal computer, 2) 

Maximum number of atoms assigned to a single FPGA, 3) 

Variance of the number of atoms assigned to each FPGA, 

4) Number of pairs of neighboring atoms in the entire 

simulation space assigned to different FPGAs, 5) Number 

of FPGAs required in the simulation, determined by the 

number of resulting sub-regions 

The number of required FPGAs differs from the number 

of available FPGAs in the system. Initially, we have a 

certain number of FPGAs in the system among which we 

want to divide the atomic space. However, after executing 

the space partitioning algorithm, the same number of sub-

regions may be identified, or the number of sub-regions 

may be slightly less than the number of 
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available FPGAs. If the latter occurs, it means the 

algorithm has determined that fewer FPGAs are needed. 

This happens in a space with sub-regions devoid of atoms, 

where using an FPGA for their simulation is unnecessary. 

Nevertheless, it is expected that the number of required 

FPGAs will always be equal to or very close to the number 

of available FPGAs. 

Table 1. Defined Scenarios for Evaluating the Proposed Algorithm and Their Parameters 

Input Parameter in 

Evaluation 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Atom Space Size 50Å×50Å×50Å 

100Å×100Å×100Å 

200Å×200Å×200Å 

400Å×400Å×400Å 

800Å×800Å×800Å 

200Å×200Å×200Å 200Å×200Å×200Å 200Å×200Å×200Å 

Number of Atoms in the 

Space 

1000000 1000000, 500000, 2000000, 

4000000, 8000000 

1000000 1000000 

How Atoms are Spread 

in Space 

Uniform Uniform to Slightly Non-Uniform Uniform to Completely Non-

Uniform 

Completely Non-Uniform to 

Uniform 

Cutoff Radius 9Å 9Å 9Å 9Å 

Cell Size 9Å×9Å×9Å 9Å×9Å×9Å 9Å×9Å×9Å 9Å×9Å×9Å 

Number of FPGAs 5, 10, 20, 40, 80 20 20 20 

 

5.2. Numerical Results 

Figure 3 compares the execution time of the proposed 

algorithm with the uniform partitioning algorithm. The 

execution time of scenario one using the uniform 

partitioning algorithm is less than two seconds, while the 

execution time of the proposed algorithm reaches several 

seconds. The execution time of the proposed algorithm 

increases with the size of the space because the number of 

possible combinations of sub-regions increases with the 

size of the space. Although the execution time of the 

uniform partitioning algorithm also increases with the size 

of the space, the slope of this graph is less than that of the 

proposed algorithm. However, since the proposed 

algorithm is executed only once for space partitioning 

before the simulation begins, an execution time of a few 

seconds is acceptable. In contrast, using the proposed 

algorithm instead of the uniform partitioning algorithm 

leads to optimal space partitioning, resulting in a reduction 

of hours or even days in the execution time of the 

simulation by parallel FPGAs. 

 
Figure 3. Execution Time of Space Partitioning Algorithms 

vs. Space Size (Scenario 1) 

 

Figure 4 illustrates the maximum number of atoms 

assigned to a single FPGA as a function of space size. The 

number of atoms in the space is 1,000,000, and the number 

of FPGAs is 20. In the optimal scenario where atoms are 

equally divided among FPGAs, each FPGA would receive 

50,000 atoms. Any number in the graph of Figure 4 that 

exceeds this value indicates a deviation from the optimal 

state. However, since the atoms are non-uniformly 

distributed in space and efforts are made to minimize the 

number of pairs of neighboring atoms assigned to different 
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FPGAs, it is natural to expect some deviation from the 

optimal state. 

The uniform partitioning algorithm does not consider the 

location of atoms and divides the space solely based on 

area. As a result, the numbers obtained for this algorithm in 

Figure 4 show a significant deviation from the optimal 

value. In contrast, the proposed algorithm has been able to 

achieve near-optimal results with a smaller deviation from 

the optimal value. The graph in Figure 4 shows that the 

deviation from the optimal value increases with the size of 

the space. This characteristic is because atoms in a smaller 

space are closer to a uniform distribution and cannot 

deviate much from it. However, the same number of atoms 

in a larger space can be further apart and deviate more from 

the uniform distribution. 

 
Figure 4. Maximum Number of Atoms Assigned to a Single 

FPGA vs. Space Size (Scenario 1) 

 

Figure 5 shows the number of neighboring atom pairs in 

the simulation space that are assigned to two different 

FPGAs. The equal-size partitioning algorithm makes no 

attempt to reduce this output, while the proposed algorithm 

attempts to reduce both the outputs of Figure 4 and Figure 

5. 

 

 
Figure 5. Number of neighboring atom pairs assigned to two 

different FPGAs as a function of space size (Scenario 1) 

 

Figure 6 shows the number of FPGAs required for the 

simulation in Scenario 2. This graph shows that the 

proposed algorithm has been able to reduce the number of 

required FPGAs by combining some sub-sections when 

partitioning the space between FPGAs. However, this 

reduction has not occurred when the number of atoms is 

high. The reason is that if the number of atoms is high 

relative to the area of space, then no empty space can be 

found in that space and all sub-sections are full of atoms. 

As a result, the sub-sections cannot be combined and all 

available FPGAs in the system will be used. 

 

 
Figure 6. Number of required FPGAs as a function of space 

size (Scenario 1) 

 

Figure 7 and Figure 8 show two parameters in Scenario 

2 that the proposed algorithm tries to reduce both of them. 

In both of these figures, the graph of the proposed 

algorithm is closer to the optimal value compared to the 

equal-size division algorithm. As the number of atoms 

increases, it is natural that these two graphs increase. As the 

number of atoms in the same space 
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increases, the uneven distribution of atoms must be closer 

to the uniform distribution state. Therefore, the difference 

of the diagram from the optimal solution decreases. 

 

 
Figure 7. Maximum number of atoms assigned to an FPGA as 

a function of the number of atoms in the space (Scenario 2) 

 
Figure 8. Number of neighboring atom pairs assigned to two 

different FPGAs as a function of the number of atoms in the space 

(Scenario 2) 

 

Figure 9 shows the maximum number of atoms assigned 

to an FPGA in Scenario 3, while the size of the space and 

the number of atoms are constant. In this figure, as the 

degree of uniformity in the distribution of atoms decreases, 

the results of the equal division algorithm deviate further 

from the optimal state, and the superiority of the proposed 

algorithm compared to the equal division algorithm 

becomes more apparent. 

 
Figure 9. Maximum number of atoms assigned to an FPGA as 

a function of the distribution of atoms in space (Scenario 3) 

 

Figure 10 shows the number of neighboring atom pairs 

assigned to two different FPGAs in scenario three, where 

the degree of uniformity in the distribution of atoms is 

different in each run of the space partitioning algorithm. In 

this figure, the graph of the proposed algorithm is closer to 

the optimal value compared to the equal division algorithm. 

Also, as the degree of uniformity in the distribution of 

atoms decreases, the results of the equal division algorithm 

and the proposed algorithm get closer to the optimal state. 

The reason is that if the atoms are not evenly distributed 

and are clustered in a few small sub-sections in the space, 

then assigning those few sub-sections to a small number of 

FPGAs can largely prevent neighboring atoms from being 

placed in different FPGAs. 

 
Figure 10. Number of neighboring atom pairs assigned to two 

different FPGAs as a function of the distribution of atoms in space 

(Scenario 3) 

6. Discussion 

Field-Programmable Gate Arrays (FPGAs) offer 

tremendous advantages in data processing due to their 

hardware-based operational paradigm, often showing 

improved speed compared to traditional processors. Their 

small size and economic viability encourage widespread 

use, thus making them an appealing platform for parallel 

molecular simulations. 

However, two main hurdles hinder efficient 

parallelization on clusters of FPGAs: uneven load 

balancing and the communication overhead between 

FPGAs. The work herein addresses these problems through 

a novel algorithmic approach cantered around 

minimization. 

While using high-speed interconnection networks may 

appear to be a straightforward way to reduce inter-FPGA 

communication delays, its feasibility decreases as the 

number of FPGAs increases. To be useful, large-scale 

molecular simulations require hundreds of FPGAs, making 

high-speed interconnects too costly. Thus, algorithmic 

inter-FPGA communication reduction is a more practical 

and less expensive approach. 
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The efficiency of the proposed partitioning algorithm 

depends on the distribution of particles in the simulation 

space. While it obviously decreases the communication 

between FPGAs for certain spatial distributions, its impact 

can be smaller for other distributions. Notably, such less-

optimal distributions often represent those cases where 

existing algorithms struggle to achieve comparable 

performance improvements. This suggests that the 

presented approach is a solid solution, particularly for 

intricate particle distributions. 

7. Conclusion  

In this research, we have defined a new problem in the 

partitioning of molecular simulation space, which is tasked 

with dividing the space of atoms in a way that the atoms 

may be placed uniformly or non-uniformly in that space. 

The goal of this problem is to partition the space in such a 

way that the execution time of the molecular simulation is 

minimized. This problem tries to minimize two partitioning 

parameters to achieve this goal. Then, we proposed an 

algorithm with polynomial execution time that can reach a 

near-optimal solution by searching for various states of 

partitioning. 

Also, we have implemented a software tool to run this 

algorithm, which executes the proposed algorithm and 

displays the partitioning result graphically. The evaluations 

performed with this software tool show the better 

performance of the proposed algorithm compared to the 

equal size division algorithm. 
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