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The energy sector encompasses essential processes such as the production, 

distribution, and consumption of energy. Traditionally, these processes have 

been managed through conventional networks, which often lead to issues such 

as process fluctuations, increased costs, and inefficiencies. However, the 

advent of Internet of Energy technology facilitates a transition from 

traditional to smart networks. In the Internet of Energy, the use of sensors 

results in the generation of large volumes of data. By employing machine 

learning to analyze this data, it becomes possible to make accurate predictions 

in the energy sector, which in turn supports effective decision-making for 

energy production and distribution. The objective of this study is to analyze 

data within the Internet of Energy using machine learning techniques, 

ultimately leading to the development of an artificial intelligence model 

capable of predicting energy consumption. Initially, previous models will be 

reviewed, and their outcomes will be compared and analyzed based on scores 

and evaluation metrics. Finally, a deep neural network model will be 

introduced, demonstrating an error rate of 0.3. The mean absolute error is 

reported as 0.4, and the mean square error is 0.3. Despite these advantages, 

there are also limitations to consider. The data involved in the analysis and 

prediction process must meet appropriate standards. The significant 

variability present in industrial processes adds complexity to the environment. 

Keywords: Internet of Energy, Machine Learning, Smart Grid, Data Analysis, 

Prediction, Neural Network. 

1. Introduction 

he Internet of Energy (IoE) is an emerging concept that 

integrates advanced communication, automation, and 

data analysis technologies to optimize the generation, 

distribution, and consumption of energy. One of the primary 

goals of analyzing IoE data using machine learning 

techniques is to enhance efficiency, reduce energy T 
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consumption, and streamline various processes within the 

energy sector. Predictive models derived from these analyses 

can significantly influence decision-making, leading to 

improved energy resource management, cost reductions, and 

environmental sustainability. 

This research focuses on key areas such as the Internet of 

Energy, machine learning, smart grids, and data analysis. 

The energy industry faces numerous challenges, including 

the inefficiencies in energy production, distribution, and 

consumption. The IoE, through its integration with smart 

systems and improved energy networks, presents potential 

solutions to these issues. For instance, the deployment of 

sensors and intelligent systems can detect and address areas 

of energy wastage, thereby minimizing losses. Additionally, 

the IoE can reduce monitoring and control costs while 

enhancing the security and resilience of energy networks. 

The integration of machine learning with IoE data 

analysis offers substantial benefits. By optimizing energy 

production, supply, and consumption processes, machine 

learning can lead to more accurate energy demand 

predictions and improved system performance. In smart 

grids and IoE frameworks, the vast amount of data generated 

by numerous processes and operations can be harnessed to 

achieve more effective outcomes. Machine learning 

algorithms, which are continuously evolving, provide 

powerful tools for analyzing this data, resulting in valuable 

insights and actionable recommendations. 

However, the implementation of IoE and machine 

learning is not without its challenges. Data quality and 

standardization are critical, as poor data can undermine the 

accuracy and effectiveness of machine learning models. 

Preprocessing and evaluating IoE data are often time-

consuming tasks that require careful attention. Furthermore, 

interpreting the results of advanced machine learning 

models, such as deep neural networks, poses significant 

challenges. Ensuring that these models are accurately 

evaluated and their performance transparently explained 

requires robust, standardized methods. 

In recent years, considerable research has been conducted 

on the application of machine learning within the Internet of 

Energy (IoE). For instance, assessed the performance of four 

distinct machine learning models Bidirectional Gated 

Recurrent Unit, Bidirectional Long Short-Term Memory, 

Bidirectional Recurrent Neural Network, and Unidirectional 

Long Short-Term Memory in predicting solar energy output 

in residential solar farms [1]. Their study emphasized that 

model performance can significantly vary depending on the 

characteristics of the datasets and the specific attributes of 

the solar installations. Similarly, (Wan and Song 2024) 

introduced a hybrid approach that integrates machine 

learning with bootstrap aggregating to enhance wind power 

production forecasts, effectively addressing both epistemic 

and aleatory uncertainties through advanced statistical 

techniques [2]. showcased the boosted decision tree 

algorithm's ability to accurately predict key performance 

indicators in cloud data centers, achieving an impressive 

accuracy rate of 98.57% [3]. 

The structure of the remainder of this paper is organized 

as follows: Section 2 provides a review of the relevant 

literature, introducing the theoretical background and 

highlighting key studies in the field. Section 3 delves into 

related works, offering a comprehensive analysis and 

critique of previous research to pinpoint gaps and areas 

requiring further investigation. Section 4 details the 

methodology, describing the approaches and tools utilized in 

this study. Section 5 discusses the findings, examining the 

results in relation to prior research and established theories. 

Lastly, Section 6 concludes with a summary of the primary 

findings, recommendations for future research, and potential 

practical applications 

2. Literature Review 

2.1. Internet of Energy (IoE) 

The Internet of Energy (IoE) represents a technological 

evolution that integrates energy systems with advanced 

communication networks, enabling more efficient and 

sustainable energy management. It builds upon the Internet 

of Things (IoT) by applying its principles to energy 

infrastructure, creating a network where energy distribution 

and consumption are optimized through real-time data and 

smart management systems. IoE focuses on the use of 

sensors and control systems to monitor and manage energy 

distribution effectively, promoting the use of renewable 

energy sources and reducing overall energy waste [4]. 

The coordination of IoE components, including smart 

grids and renewable energy sources, enhances energy 

efficiency and system reliability. Smart grids within the IoE 

framework leverage communication technologies to 

optimize electricity production, transmission, and 

consumption, ultimately leading to improved energy 

management and reduced operational costs [5, 6]. IoE also 

plays a crucial role in ensuring the stability and security of 
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energy infrastructure by integrating and managing diverse 

renewable energy sources [7]. 

Implementing IoE in the energy sector offers significant 

benefits, such as more efficient electricity production, 

reduced transmission costs, and better utilization of 

renewable energy sources. IoE enables decentralized energy 

production, allowing smaller-scale renewable energy 

installations, like wind turbines, to contribute directly to the 

grid, reducing energy losses associated with centralized 

power plants [8, 9]. 

2.2. Importance of Machine Learning in the Internet of 

Energy 

The complexity of modern energy systems, characterized 

by vast networks of generators, transformers, and 

distribution systems, necessitates advanced methods for 

analysis, optimization, and prediction. Machine learning 

(ML) emerges as a vital tool in this context, enabling energy 

industries to manage and predict system behaviors more 

effectively. By leveraging historical data and applying 

statistical models, ML can predict equipment failures, 

optimize operations, and improve decision-making 

processes within energy systems [10, 11]. 

With the help of historical data and statistical models, 

issues like equipment failures and operation optimization 

can be addressed through analysis and prediction of energy 

systems [12]. The increasing demand for energy has led to 

greater emphasis on machine learning, analysis methods, 

and predictions. Due to the large volume of data generated 

from various sources in the energy industries, machine 

learning methods can enhance energy system operations [13, 

14]. 

Machine learning and its methods for analysis and 

prediction in the energy industries are becoming 

increasingly popular due to their ability to manage the vast 

amounts of data generated in these industries. In fact, using 

machine learning algorithms to identify appropriate patterns 

in data and make predictions and decisions based on these 

patterns is becoming more prevalent [15, 16]. The benefits 

of using machine learning methods in the energy industries 

include improved accuracy, reduced costs, and increased 

efficiency [17]. 

2.3. Machine Learning Methods in the Internet of Energy 

With the emergence of Internet of Energy technology, 

machine learning has gained significant importance due to 

its unique ability to manage and predict energy demand in 

industries and energy systems, increasing efficiency and 

reducing energy consumption. Additionally, machine 

learning can enable machines to discover patterns from data. 

Deep neural networks are also used to create simpler models 

using large and voluminous data, enhancing energy 

management performance across the network. Furthermore, 

machine learning methods are used to predict energy 

production, consumption, and demand. 

One of the most popular types of machine learning is 

supervised learning, which has various predictive 

capabilities. Methods like decision trees and support vector 

machines allow data scientists to experiment with different 

models and data configurations. Using supervised machine 

learning models, better efficiency in demand prediction can 

be achieved. These algorithms can also improve existing 

energy management systems by providing more accurate 

experimental results through an improved data model. 

Ultimately, this leads to better efficiency in demand 

forecasting and energy management systems [18]. 

Machine learning can transform the energy industry, 

especially electricity. With the increasing complexity of 

energy fluctuations in power grids, machine learning 

techniques outperform traditional methods. Quantile 

regression is one of the most popular machine learning 

models for predicting load in power networks, using 

artificial neural networks to learn from data patterns and 

predict future energy needs. This network consists of layers 

of neurons connected by weights representing various 

features of energy demand or load in a network system. 

Using deep learning algorithms, the network can be trained 

to improve its accuracy in predicting energy needs or load in 

a network system [19, 20]. 

2.4. Machine learning in error and failure analysis 

One of the basic applications of machine learning in smart 

grid is prediction. Electric load and price forecasting is 

critical for efficient energy management in the smart grid. 

Machine learning algorithms can be trained to analyze 

historical data and identify patterns that can be used to 

predict future energy demands and prices [21]. These 

predictions can help power companies plan their energy 

generation and distribution strategies, reduce waste, and 

increase efficiency. Another important application of 

machine learning in smart network is classification. Fault 

classification is a critical task in maintaining the reliability 

and safety of the power grid [22]. Machine learning 
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algorithms can analyze data from different sensors and 

identify different types of errors and their severity. This 

information can be used to prioritize maintenance work and 

prevent possible breakdowns. In addition, machine learning 

algorithms can be trained to classify different types of power 

quality issues, such as voltage sags, interruptions and 

transients, allowing companies to take corrective actions to 

minimize their impact on consumers [23]. 

2.5. Machine learning in demand side management 

Demand-side management (DSM) focuses on modifying 

electricity consumption behaviors to align more effectively 

with energy supply availability. Machine learning has 

become increasingly vital in DSM, facilitating the planning, 

execution, and monitoring of strategies aimed at influencing 

consumer electricity usage. By processing data from smart 

meters and other sensors, ML algorithms can detect high-

energy-consuming devices and fine-tune DSM strategies to 

minimize peak demand and enhance energy efficiency [24-

26]. 

Furthermore, ML techniques contribute to the 

optimization of DSM strategies by analyzing data related to 

consumption patterns, weather conditions, and other 

variables, thereby enabling the effective application of peak-

remediation and load-shifting strategies. This optimization 

helps alleviate the stress on energy supplies during peak 

times and contributes to a more dependable electricity 

supply [27]. 

2.6. Comparison of machine learning domains and 

techniques 

Researches conducted in the field of the subject under 

discussion provide valuable information that can help to 

better understand the research problem. The purpose of this 

section is to identify and analyze previous studies related to 

the research topic in order to determine their strengths and 

weaknesses as well as their key findings. 

In the paper "Prospects and challenges of machine 

learning and data-driven methods for predictive analysis of 

power systems" [28] some areas of machine learning such as 

prediction in smart networks, machine learning in error 

analysis and Failure, machine learning in demand 

management and machine learning in energy trading are 

expressed. Each of these areas has similarities and 

differences, the most important ones are summarized in 

Table 1 after examining them. 

Table 1 

Similarities and differences of machine learning domains 

Key Areas Similarities Differences 

Forecasting in smart grids - Focuses on ensuring the effective 

operation and management of the energy 

network to enhance reliability and 

efficiency 

- Involves predicting future electricity consumption and 

renewable energy output using techniques like time series 

analysis, regression models, and artificial neural networks 

tailored to each forecasting task. 

Machine learning in error and failure 

analysis 

- Involves predicting, classifying, 

identifying, and locating faults and 
breakdowns within the system to prevent 

disruptions and improve maintenance 

- Utilizes high-precision sensor data to accurately classify, 

identify, and pinpoint faults and system breakdowns 

Machine learning in demand side 

management 

- This approach modifies electricity 

consumption patterns to better match the 

availability of energy resources, aiming to 
improve efficiency and reduce peak 

demand 

- Analyzes historical data to uncover patterns and make 

forecasts regarding future energy needs and pricing trends 

Machine learning in energy trading - Includes forecasting energy prices, 

optimizing trading strategies, and 

analyzing market trends to make informed 
decisions in energy trading 

- Integrates data from diverse sources, including energy 

usage, weather conditions, and social media, to forecast 

energy prices and market dynamics 

 

In the paper "Load forecasting techniques and their 

application in smart networks" [29], some load forecasting 

techniques such as traditional techniques, cluster-based 

techniques and artificial intelligence-based techniques are 

described. All these techniques have advantages and 

disadvantages along with their various uses. After reading 

and reviewing the contents of this paper, a summary of the 

items stated in Table 2 is given. 
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Table 2 

Advantages and disadvantages of load forecasting techniques 

Technique Name Advantages Disadvantages 

Traditional load forecasting techniques - Extent in the industry 

- Simple implementation and 

understanding 

- it's not precise. 

- Failure to manage complex or non-linear relationships in 

data 

- No management of lost data 

Cluster-based load forecasting techniques - Identifying patterns and relationships in 

data is better than traditional methods. 

- Need a lot of data for high accuracy 

- Computational compactness in execution 

- Difficulty in interpreting and understanding them 

Load forecasting techniques based on 

artificial intelligence 

- Management of complex or non-linear 

relationships in data 

- Identifying and predicting patterns in 

specific groups of data 

- Need a lot of data for high accuracy 

- Computational compactness in execution 

- Difficulty in interpreting and understanding them 

 

In the paper "Current Status, Challenges and Prospects of 

Data-Based Urban Energy Modeling: An Overview of 

Machine Learning Methods" [30], various machine learning 

techniques including decision tree, artificial neural network, 

random forest and multilayer neural network are described. 

Is. These techniques have advantages and disadvantages. In 

fact, any technique can be used for a specific application to 

have a favorable result. By reading the paper and reviewing 

the contents of each of the techniques, you can see some of 

the advantages and disadvantages of machine learning 

techniques in Table 3. 

Table 3 

Advantages and disadvantages of machine learning techniques 

Algorithm Advantages Disadvantages 

Decision Tree - The model handles outliers effectively 

without significant impact on its 

performance 

- The technique can handle increasing 

amounts of data without a loss in 

performance 

- Data sensitive 

- The possibility of sampling errors 

- More time for training 

Artificial Neural Networks - It provides more accurate predictions 
compared to other methods 

- The model is straightforward and easy to 

implement 

- It excels at recognizing and modeling 

intricate and non-linear patterns in the data 

- Poor repeatability 

- Difficulty in controlling several variables 

Random Forests - The method manages missing or 

incomplete data efficiently 

- It shows resilience in the presence of 

missing data 

- The approach effectively reduces 

prediction errors and variability 

- It can determine the significance of 

different features in the model 

- Correlation of input data with a target output 

Multilayer Neural Network - The technique performs well in 

identifying patterns and building accurate 

models 

- It is particularly effective for problems 

involving non-linear relationships 

- A lot of training time 

- Slower convergence 

2.7. Previous investigations 

Bashir conducted a comparative analysis of the latest 

machine learning algorithms employed in LF SG techniques, 

concluding that the decision tree model outperformed other 

approaches, such as Support Vector Machine (SVM), K-

Nearest Neighbors (KNN), neural networks, logistic 

regression, and Naive Bayes. The decision tree achieved 
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nearly perfect results, including a full accuracy rate, close to 

100% recall, a 100% F1 score, and a 99.96% precision rate 

[31]. 

In another study, Jiao developed a method for short-term 

power consumption forecasting for non-residential 

customers by combining K-Nearest Neighbors (KNN) 

clustering, the Spearman correlation coefficient (SCC), and 

a Long Short-Term Memory (LSTM)-based framework. By 

analyzing customer power usage patterns with KNN 

clustering and using SCC to measure the correlation of 

sequence data, the authors identified key time series features 

to incorporate into the predictive model. When the 

correlation coefficient was high, and hypothesis H1 was 

validated, these features were included in the framework, 

significantly improving prediction accuracy. Their proposed 

technique achieved the best results when tested on real-

world data [32]. 

Cugliari introduced clustering tools designed for 

electricity load forecasting, where the overall signal is 

divided, and the sum of these divided forecasts enhances the 

global signal forecast. This method started by identifying 

"super-consumers" through curve clustering, then 

establishing a hierarchy of partitions, and selecting the most 

effective one based on forecast partition standards [33]. 

Li presented a novel data-driven linear clustering (DLC) 

approach to address long-term load forecasting in some 

developed cities. This method involved processing a large 

dataset of post loads at annual intervals using the DLC 

approach, and subsequently developing optimal automated 

integrated moving average (ARIMA) models for each 

cluster to forecast future loads. The LF system results were 

derived by summarizing predictions across all ARIMA 

models. Their analysis and application results indicated that 

the DLC approach effectively reduced random LF errors 

while maintaining high modeling accuracy, resulting in a 

more reliable LF system [34]. 

Aly introduced a new short-term load forecasting 

technique that combines various models with clustering 

methods to improve both performance and accuracy. The 

proposed models integrated Kalman filter wavelet neural 

networks with artificial neural networks, using six different 

clustering-based methods. Simulations showed improved 

performance with the applied methods. The research utilized 

scaled data and was validated using datasets from locations 

in Egypt and Canada [35]. 

Zhang and Li introduced a novel closed-loop clustering 

algorithm that merges hierarchical structure with predictive 

modeling, where the objectives of prediction and clustering 

are linked through a feedback mechanism, using goodness 

of fit as the clustering criterion [36]. 

Sha proposed a simplified load forecasting technique 

tailored for engineering applications, using only three 

features as model inputs. The daily dry bulb temperature 

average was converted to degree days, serving as an input 

feature, which improved model performance. Additionally, 

a method for determining the balance point temperature 

based on building usage characteristics was proposed, 

influenced by the type of day and month. They used three 

machine learning models: multivariate linear regression 

(MLR), support vector regression (SVR), and artificial 

neural networks (ANN) for prediction. Results showed that 

the SVR and ANN models outperformed the MLR model, 

though the performance in predicting heating was notably 

poor, highlighting the significance of the training dataset 

size in determining model efficacy [37]. 

Badr proposed an encrypted energy prediction technique 

designed to protect the privacy of smart grid measurement 

systems through federated learning (FL). They developed a 

hybrid energy prediction model based on deep learning (DL) 

and devised an efficient data aggregation scheme to maintain 

consumer privacy by encrypting model parameters during 

FL training using functional encryption. Their results 

demonstrated high prediction accuracy, with the data 

aggregation scheme effectively preserving privacy [38]. 

Ibrahem proposed a machine learning-based framework 

that enabled electric utilities to detect electricity theft, 

calculate bills, and monitor energy usage while preserving 

user privacy through Functional Encryption (FE). 

Aggregated encrypted readings were used for billing and 

load monitoring, with evaluations showing that this scheme 

was effective in preserving privacy and accurately detecting 

electricity theft [39]. 

Leme compared Support Vector Regression (SVR) with 

Gradient Boosting (GB) and Random Forest (RF) algorithms 

for forecasting daily and monthly electricity consumption in 

Brazil's interconnected power grid. The authors found that 

the GB algorithm offered better predictive accuracy and 

lower mean absolute error than the other two algorithms 

[40]. 

Fard and Hosseini explored the impact of various 

building features on energy consumption using the Internet 

of Things (IoT) and machine learning algorithms, including 

Univariate Linear Regression, K-Nearest Neighbors (KNN), 

AdaBoost, and Artificial Neural Networks (ANN). They 
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used energy efficiency datasets and identified building 

height as the most influential feature affecting energy 

consumption. Additionally, the AdaBoost algorithm was 

found to be the most effective for predicting heating and 

cooling loads [41]. 

These studies, among others, highlight the growing 

influence of machine learning in the energy sector. However, 

some research has identified limitations, such as insufficient 

detail in model evaluations or lack of clarity in the choice of 

algorithms and their specific applications. Addressing these 

gaps in future research could enhance the effectiveness and 

transparency of ML in IoE systems. 

3. Methodology 

This section describes the research methodology used to 

create and assess a specialized model utilizing machine 

learning and deep learning techniques. Due to the practical 

and experimental aspects of the study, it was crucial to have 

the appropriate tools and programming environment to 

implement the machine learning and deep learning 

algorithms. The following outlines the specific tools, 

libraries, and algorithms employed in this research. 

3.1. Required Tools 

To implement the proposed method, the Python 

programming language was chosen due to its extensive 

libraries and ease of use, particularly in data science, 

machine learning, and deep learning. The following tools 

and libraries were employed:  

• NumPy: A powerful library for numerical 

operations, NumPy supports working with 

multidimensional arrays and matrices. It offers a 

wide range of mathematical functions, making it 

indispensable for handling and processing large 

datasets. 

• Pandas: This library is crucial for data manipulation 

and analysis. It allows for reading, writing, 

modifying, and processing structured data in 

various formats like CSV, Excel, SQL, and JSON. 

Pandas simplifies the handling of large datasets by 

providing data structures like DataFrames. 

• Matplotlib: A highly versatile library for data 

visualization, Matplotlib was used to create a 

variety of plots and charts. It enables the graphical 

representation of data, which is essential for 

analyzing trends and patterns. 

• PyTorch: For the implementation of deep learning 

algorithms, PyTorch was selected due to its 

dynamic computational graph, ease of use, and 

strong support for GPU acceleration. PyTorch's 

flexibility allows for real-time modification of 

neural networks, which is critical in iterative model 

development. 

3.2. Machine Learning Algorithms 

This study utilized a range of machine learning and deep 

learning algorithms selected based on their relevance to the 

research objectives and their capability to effectively address 

the research questions. 

1. Regression Models: 

• Linear Regression: Applied to predict a 

dependent variable using one or more 

independent variables, linear regression 

captures the relationship between these 

variables. For scenarios involving non-linear 

relationships, more advanced methods like 

polynomial regression and spline 

transformations were implemented. 

2. Neural Network Models: 

• Artificial Neural Networks (ANNs): Modeled 

after the human brain's neural structure, ANNs 

were employed to tackle complex problems 

involving extensive datasets. They are 

particularly useful for tasks such as image 

processing, pattern recognition, and analyzing 

time series data. ANNs are well-suited for 

modeling non-linear relationships within data. 

3. Ensemble Methods: 

• Ensemble Learning: This approach combines 

multiple models to boost overall performance. 

Techniques like Random Forests and Gradient 

Boosting were utilized by training multiple 

models either in parallel or sequentially, 

enhancing both prediction accuracy and model 

robustness. 

4. Deep Learning Models: 

• Deep Neural Networks (DNNs): Featuring 

multiple hidden layers, DNNs were used to 

extract complex features from large datasets. 

These networks excel in tasks requiring deep 

feature extraction, such as image recognition 

and natural language processing. Although 
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DNNs demand significant computational 

resources and large amounts of data, they were 

chosen for their exceptional ability to manage 

complex problems. 

3.3. Model Development and Evaluation 

The development of the research model was carried out 

in several key stages:  

• Data Collection and Preparation: Data was 

gathered from multiple sources and then 

processed to make it suitable for analysis. This 

step included data cleaning, addressing 

missing values, normalizing the features, and 

dividing the dataset into training and testing 

subsets. 

• Training the Model: The chosen machine 

learning algorithms were trained using the 

prepared data. Hyperparameters were fine-

tuned to enhance model performance, and 

cross-validation was employed to avoid 

overfitting. 

• Model Assessment: The trained models were 

assessed using various metrics, including 

accuracy, precision, recall, F1-score, and mean 

absolute error (MAE). These metrics provided 

a detailed understanding of the models' 

prediction capabilities and their ability to 

generalize to unseen data. 

• Iterative Model Refinement: Based on the 

assessment outcomes, the models underwent 

iterative refinement. This process involved 

adjusting hyperparameters, testing alternative 

algorithms, and integrating additional data 

features to improve performance. 

Employing these tools and methodologies ensured that 

the research was conducted with a high degree of rigor, 

resulting in the creation of a robust and specialized model 

for the study. 

4. Data Analysis 

This section outlines the data analysis process employed 

in the development and validation of the research model. The 

process encompasses data collection, preprocessing steps, 

exploratory data analysis (EDA), and the deployment of a 

deep learning model. 

4.1. Dataset 

The dataset used in this research was sourced from 

Kaggle and contains 1,000 rows with 10 features: 

• Time: Timestamp of the record. 

• Temperature: Ambient temperature. 

• Humidity: Humidity level. 

• Size: Number of people present in the environment. 

• Persons: Number of people living in the area. 

• Heating and Cooling System: Indicates system 

usage (binary). 

• Lighting System: Indicates lighting system usage 

(binary). 

• Renewable Energy: Percentage of energy from 

renewable sources. 

• Holiday: Indicates if the day is a holiday (binary). 

• Energy Consumption: Amount of energy 

consumed. 

This dataset provides a comprehensive view of factors 

affecting energy consumption, which is crucial for training 

and testing machine learning models. 

This data set, a part of which is shown in Error! R

eference source not found., provides a comprehensive view 

of various factors affecting energy consumption, which will 

be very important for training and testing our machine 

learning models. 

 

 

 

 

 

Table 4 

Part of the dataset used in the project 
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Time temperature humidity Size Persons Heating or cooling 

system 

Lighting 

system 

renewable 

energy 

Closed Energy 

consumed 

2022-01-

01 25.1 43.4 1565 5 On Off 2.7 No 75.3 

2022-01-

01 27.7 54.2 1411 1 On On 21.8 No 83.4 

2022-01-

01 28.7 58.9 1755 2 Off Off 6.7 No 78.2 

2022-01-

01 20.0 50.3 1452 1 Off On 8.6 No 56.5 

2022-01-

01 23.0 51.4 1094 9 On Off 3.0 No 70.8 

4.2. Data Type Conversion 

To prepare the data for analysis and model training, non-

numeric or categorical features were converted to numeric 

types using two methods:  

• Label Encoding: Assigned numerical values to each 

category. This method was applied to columns such 

as "Heating and Cooling System," "Lighting 

System," and "Holiday." 

• One-Hot Encoding: Created separate binary 

columns for each category. This method was used 

for other categorical features, facilitating model 

training by representing categories in a more 

suitable format. 

These conversions ensured that all features could be 

processed effectively by the machine learning algorithms. 

4.3. Exploratory Data Analysis 

EDA was conducted to understand the dataset better and 

identify important features:  

• Statistical Measures: Calculated variance, 

covariance, mean, median, and mode for all 

features to understand their distributions and 

relationships. 

• Correlation Analysis: A correlation matrix was 

created using Seaborn to assess the degree of 

dependence between features and their relationship 

with the target variable, "Energy Consumption." 

Key findings include: 

• Temperature: Correlation of 0.69 with 

energy consumption. 

• Heating and Cooling System: Correlation 

of 0.30. 

• Number of People: Correlation of 0.10. 

• Other Features: Very weak or zero 

correlation with energy consumption. 

• Scatter Plots: Generated scatter plots using 

Matplotlib to visualize relationships between pairs 

of features. For instance, a scatter plot of 

temperature versus energy consumption revealed a 

linear relationship, indicating that higher 

temperatures are associated with higher energy 

consumption. 

The insights gained from EDA guided the feature 

selection and model development processes. 

4.4. Data Preprocessing 

Data preprocessing was conducted to improve model 

accuracy and efficiency:  

• Normalization: Data was scaled to fall within a 

range of 0 to 1, ensuring that each feature had an 

equal impact during model training. 

• Standardization: Data was adjusted to have a mean 

of zero and a standard deviation of one, aiding in 

better convergence during the training phase. 

These preprocessing steps ensured that the data was 

optimally formatted for training the machine learning 

models. 

4.5. Final Model Implementation 

The deep learning model was developed using the 

PyTorch framework. To enhance its performance, the 

following components were integrated:  

• Layers: Incorporated multiple hidden layers to 

effectively capture intricate patterns within the 

data. 

• Dropout: Utilized dropout regularization to prevent 

overfitting by randomly disabling a portion of input 

units during the training phase. 

• Activation Function: Employed the ReLU 

(Rectified Linear Unit) activation function in the 



 

 Kaveh et al.                                                                                                                        Artificial Intelligence Applications and Innovations 1:1 (2024) 28-41 

 

 

 
 

37 

hidden layers to introduce non-linearity, enabling 

the network to learn more complex relationships. 

• Optimization: Applied advanced optimization 

algorithms to minimize the loss function and 

improve the model’s accuracy. 

The final deep neural network was meticulously fine-

tuned through extensive testing and parameter adjustments 

to ensure robust performance. These measures guaranteed 

that the model could accurately predict energy consumption 

based on the dataset. 

By adhering to these data analysis and preprocessing 

procedures, the research aimed to develop a reliable and 

effective model for forecasting energy consumption, 

leveraging both machine learning and deep learning 

techniques. 

5. Discussion 

This research aimed to identify the most effective 

machine learning and deep learning models for predicting 

energy consumption and optimizing processes in the energy 

sector. The exploration and implementation of various 

algorithms, including regression, neural networks, and 

ensemble learning, provided insights into their effectiveness 

for this application. Below, each algorithm's performance 

and findings are discussed, and comparisons are made with 

existing literature. 

5.1. Regression 

Implementation and Results: 

• Normalization: Data was normalized using 

MinMaxScaler to ensure that numerical values fall 

between 0 and 1. 

• SGDRegressor: Applied to assess initial regression 

performance. The best score achieved was 0.59, 

with an MAE of 0.08 and an MSE of 0.01. 

• Polynomial Regression: Different polynomial 

functions were tested. The use of 

PolynomialFeatures with SGDRegressor yielded 

the best result, with a score of 0.73, an MAE of 

0.07, and an MSE of 0.008 

Polynomial regression improved performance compared 

to linear regression, highlighting the importance of modeling 

non-linear relationships in energy consumption data. The 

relatively higher score and lower error rates indicate that 

polynomial features were better suited for capturing 

complex patterns in the dataset. 

5.2. Neural Network 

Implementation and Results: 

• Normalization: Data was normalized using 

StandardScaler to scale numerical values between -

1 and 1. 

• MLPRegressor: A neural network with 70 hidden 

layers, 1000 iterations, and a learning rate of 0.01 

was used. The best score achieved was 0.996, with 

an MAE of 0.03 and an MSE of 0.003. 

The neural network model performed exceptionally well, 

achieving a high score and low error rates. The use of 

multiple hidden layers and proper normalization contributed 

to its effectiveness in capturing complex patterns and 

relationships in the data. 

5.3. Ensemble Learning 

Implementation and Results: 

• XGBoost: Used for its gradient boosting 

capabilities, with parameters set for regression 

mode, 100 trees, a maximum depth of 10, and a 

learning rate of 0.1. The best score achieved was 

0.9999, with an MAE of 0.0009 and an MSE of 2.5 

× 10^-6. 

XGBoost significantly outperformed other algorithms, 

with an almost perfect score and extremely low error rates. 

Its ability to combine multiple decision trees to improve 

prediction accuracy was clearly effective for the energy 

consumption dataset. 

5.4. Comparison with Existing Studies 

1. Intelligent Solar Predictions [1]: 

• Findings: The study discussed machine learning 

models for solar energy prediction, highlighting 

neural networks' effectiveness. While our neural 

network results were comparable, using evaluation 

metrics like MAE and MSE for the test dataset 

could further validate the models' performance. 

2. Energy Demand Prediction [42]: 

• Findings: The study focused on SVM, ANN, and 

LSTM models for energy demand prediction. The 

flexibility and performance of ANNs were noted, 

aligning with our findings that neural networks 

provide excellent results. Additional details on 

specific regression or classification methods and 



 

 Kaveh et al.                                                                                                                        Artificial Intelligence Applications and Innovations 1:1 (2024) 28-41 

 

 

 
 

38 

evaluation metrics would strengthen their 

comparison. 

3. Short-Term Net Load Prediction [43]: 

• Findings: The use of Bayesian neural networks 

showed improved predictions. While our deep 

neural network model also performed well, 

specifying the percentage of improvement and 

accuracy could offer a clearer comparison. 

4. Load Prediction Techniques [44]: 

• Findings: SVM, ANN, and other models were 

explored for power systems. The study emphasized 

ANN’s performance, which aligns with our results. 

More precise error rates and evaluation methods 

would provide a more thorough comparison. 

5. Short-Term Individual Electricity Load Prediction 

[45]: 

• Findings: The study demonstrated improved 

accuracy with a combined prediction framework. 

Our results with deep neural networks also showed 

high accuracy. Detailed comparisons of model 

superiority and evaluation methods would be 

beneficial. 

6. Machine Learning Algorithms for Energy 

Consumption [41]: 

• Findings: Various algorithms, including AdaBoost 

and neural networks, were used. Our findings 

corroborate that neural networks and ensemble 

methods like XGBoost are effective. A detailed 

comparison of results and models used would 

enhance understanding. 

7. Comparative Analysis of Machine Learning 

Algorithms [31]: 

• Findings: Decision trees were noted for their 

performance, although our study found deep neural 

networks and ensemble methods like XGBoost to 

be more effective. Clear details on decision trees' 

performance, parameters, and evaluation methods 

would improve the comparison. 

In Table 5 below, a summary of the implemented 

algorithms along with their scores and evaluation results is 

provided. 

Table 5 

The results of running machine learning algorithms 

Algorithm Score Mean 

Absolute 
Error 

Mean 

Square 
Error 

Regression 0.73 0.07 0.008 

Multilayer Neural Network 0.996 0.03 0.003 

Deep Neural Network  0.4 0.3 

Ensemble Learning 0.9999 0.0009 2.5 *10 -

6  

 

The study effectively implemented and evaluated various 

machine learning algorithms for energy consumption 

prediction. The deep neural network and XGBoost 

algorithms emerged as the most effective models, 

demonstrating high accuracy and robust performance. These 

results suggest that advanced models can significantly 

enhance decision-making and process optimization in the 

energy sector. Further comparisons with existing studies 

underscore the value of selecting appropriate models and 

evaluation metrics for specific applications. 

6. Conclusion 

The energy sector encounters considerable challenges in 

optimizing the production, distribution, and consumption of 

energy. The Internet of Energy (IoE) presents promising 

solutions by leveraging advanced technologies and data 

analytics. This research highlights the crucial role of 

machine learning in tackling these challenges, with a focus 

on enhancing energy processes and boosting efficiency 

through predictive modeling and data analysis. 

Key Findings:  

1. Machine Learning for Optimization: 

• Machine learning, particularly deep learning, has 

proven effective in predicting energy consumption 

and enhancing energy management. The deep 

neural network model developed in this study 

achieved commendable performance, with an error 

rate of 0.3, and a mean absolute error (MAE) of 0.4. 

This model showcases the potential of advanced 

machine learning techniques in managing complex 

datasets and making accurate predictions. 

2. Effectiveness of Algorithms: 

• Among the various machine learning algorithms 

tested, deep neural networks and ensemble methods 

like XGBoost showed the best results. XGBoost, 

with its ability to combine multiple decision trees, 

achieved an almost perfect score, highlighting its 

effectiveness in handling the data's complexity. 

Deep neural networks also demonstrated strong 

performance, with low error rates indicating their 
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suitability for large-scale data and complex 

problem-solving. 

3. Data Analysis and Optimization: 

• The study underscores the importance of data 

analysis in optimizing energy production and 

distribution. By leveraging the vast amounts of data 

generated in smart networks and IoE, machine 

learning algorithms can offer insights that lead to 

improved efficiency and more accurate predictions 

of energy needs. 

4. Limitations and Scope for Improvement: 

• The research encountered limitations due to 

constraints within the dataset, such as the absence 

of detailed information on geographic location, 

energy production levels, and weather conditions. 

These limitations hindered the deep neural network 

model from reaching its full potential. Furthermore, 

the reliance on tabular datasets restricted the use of 

more advanced deep learning algorithms like 

Generative Adversarial Networks (GANs), 

Recurrent Neural Networks (RNNs), and Graph 

Neural Networks (GNNs), which are generally 

more effective when applied to image or time series 

data. 

Recommendations for Future Research: 

1. Incorporate Advanced Deep Learning Models: 

• Future research should explore the application of 

RNNs, GANs, and GNNs to leverage their 

capabilities for more sophisticated modeling, 

especially in scenarios involving sequential data or 

complex relationships that go beyond tabular data. 

2. Expand Data Sources: 

• To enhance the accuracy and effectiveness of 

predictive models, future studies should include 

diverse and comprehensive datasets that encompass 

geographic, environmental, and operational 

variables. This will enable the development of more 

robust models capable of addressing a broader 

range of energy industry challenges. 

3. Explore New Technologies: 

• Investigating emerging technologies and 

methodologies in machine learning can provide 

additional insights and improvements. This 

includes studying the integration of IoE with other 

technological advancements to create more 

efficient and responsive energy systems. 

This research underscores the substantial potential of 

machine learning in optimizing processes within the energy 

industry. By overcoming current limitations and 

investigating advanced models and technologies, future 

studies can further improve energy efficiency and 

management. The deep neural network model developed 

here provides a solid foundation for future exploration and 

application in the energy sector. The findings emphasize the 

crucial role of ongoing innovation and research in utilizing 

machine learning to address complex energy challenges. 
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