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Today, smartphones are prevalent for personal and corporate use and have become 

the new personal computer due to their portability, ease of use, and functionality 

(such as video conferencing, Internet browsing, e-mail, continuous wireless and data 

connectivity, worldwide map location services, and countless mobile applications 

such as banking applications). On the other hand, we store many sensitive and private 

information daily on smart devices. This information is of interest to malicious 

writers who are developing malware to steal information from mobile devices. 

Unfortunately, the open source and widespread adoption of the Android operating 

system has made it the most targeted of the four popular mobile platforms by malware 

writers. Many researchers have tried to identify malware using program signatures, 

which have been successful to some extent. However, the signature cannot 

effectively identify new and unknown malware. For this reason, in this article, we 

propose a method that designs a machine-learning model for Android malware 

detection based on the properties of Permissions, Intents APKs. In this study, we 

evaluated more than 25,000 Android samples belonging to malware and trusted 

samples. Experimental results show the effectiveness of the proposed method by 

obtaining 96.27% accuracy. 

Keywords: Malware detection, Artificial Intelligence, Machine Learning, Anti-malware, 

Android, XGBoost, Ensemble Classifier. 

  

1. Introduction 

he use of smartphones has increased exponentially in 

recent years. According to Statista statistics, in 2023, 

7.33 billion people will use mobile phones, and 72% will use 

Android smartphones [1, 2]. In the current era, smartphones 

and the Internet of Things (IoT) are used everywhere as the 

main media of information communication and T 
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entertainment [3]. Mobile devices are becoming a part of our 

daily lives and are used even more than conventional 

computer systems such as personal computers [4]. 

Despite significant and continuous improvements in 

cyber security mechanisms, malware remains one of the 

most severe threats in cyberspace. According to the McAfee 

report, the total number of malware samples in 2020 

gradually increased to about 1.5 billion. Malware 

everywhere erodes cyberspace and creates sub-branches 

such as mobile malware, MacOS malware, Internet of 

Things malware, and Coin Miner malware, which cause 

substantial financial damage to individuals and industries 

[5]. According to the latest report published by the computer 

security company G Data, a new malware is found in online 

repositories every 8 seconds. In this way, 11,000 malware 

are produced daily [6]. 

The Android platform providers have proposed several 

security measures to prevent the installation of malware, the 

most important of which is the Android licensing system. 

Each application must explicitly request the user perform 

some task on the device during installation, such as sending 

SMS, etc. [7]. However, many users tend to blindly grant 

permissions to unknown applications, undermining the 

licensing system's purpose. 

To solve this problem, many research methods have been 

proposed to analyze and identify Android malware before 

installation. Traditionally, anti-malware software, whether 

for Android, Windows, or other operating systems, identifies 

malware by its signature. Examples of file signatures include 

file encryption hashes and byte patterns. Then, malware is 

identified by extracting the program's signature and 

checking it against a known database [8]. Any slight change 

in the signature can cause the anti-malware not to detect the 

malware. These small changes can be introduced by 

replacing a few lines of code, directives, or even keywords. 

This limitation prevents the detection of existing malware 

and malware based on zero-day attacks. Periodic anti-

malware updates are insufficient to keep up with this 

constant stream of new malware. At any given time, anti-

malware software will not be aware of thousands, if not 

more, of malware. As a potential solution to this problem, 

artificial intelligence (AI) methods such as machine learning 

(ML) and deep learning (DL) can be used to provide anti-

malware products with the ability to identify new malware 

based on common patterns in existing malware. 

According to the mentioned cases, this article aims to 

present a machine learning model using a static analysis 

method to identify Android malware with the ability to 

identify zero-day malware. The rest of this paper is 

organized as follows: Related works are introduced in 

Section 2. An overview of the architecture is presented in 

Section 3. The implementation and evaluation of our 

proposed method are discussed in detail in Section 4 and 

Section 5, respectively. Section 6 concludes the paper. 

2. Literature Review 

Due to the number of Android devices and the security 

risks associated with Android malware, the field of Android 

malware detection using machine learning has grown 

significantly in recent years. Researchers have proposed 

supervised, unsupervised, and deep-learning strategies to 

detect Android malware [9]. 

Support vector machines (SVM) and decision trees, two 

examples of supervised learning techniques, have been 

widely used in Android malware detection [10]. In order to 

build a model capable of distinguishing between legitimate 

and malicious Android apps, these methods rely on labeled 

training data. 

Android malware detection also uses unsupervised 

learning techniques like clustering and dimensionality 

reduction. These techniques can detect patterns in data that 

may indicate malware and do not require labeled training 

data [11]. 

However, using machine learning techniques to detect 

Android malware is the subject of this survey. In the 

following, we examine some of the research done in this 

field. 

The authors in [12], PUMA (Permission to Use for 

Malware Detection on Android), presented a new strategy 

for detecting malware on Android devices. The authors 

claim that malware's excessive use of permissions can serve 

as an identification signature for malicious programs. 

PUMA uses an ML-based algorithm that trains a classifier 

from a dataset (more than 4000 APKs containing malicious 

and malware) of malware and benign applications. The 

permissions requested for the application and their usage 

patterns are the characteristics used for classification. The 

authors stated that PUMA detects malware with over 90% 

accuracy and a low false positive rate. 

The malware detection approach in [13] uses a feature-

based learning framework where permissions and API calls 

are used as features. This work uses machine learning 

methods such as SVM, decision trees, and bundling 
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approaches and achieves an accuracy of 96.88%. The work 

in [13] used a static analysis technique. 

Jung et al. [14] used a static analysis technique and 

presented an approach to selecting a set of API calls to detect 

malicious Android apps. This approach selects two sets of 

API calls: a benign API list and a malicious API list, which 

contain the most commonly called APIs in benign and 

malicious applications, respectively. This is a very simple 

method to determine whether a new program is benign or 

malicious, but it gives a high accuracy of nearly 90%. 

[15] proposed an SVM-based malware detection scheme 

using suspicious API calls and dangerous authorization as 

features. This feature data trains the SVM classifier, which 

is then used to identify unknown malware in the future. The 

test results showed that the proposed plan's accuracy is 81% 

without taking into account the risky licenses and 86% with 

the licenses taken into account. 

In [16], a static detection method based on 151 trained 

Android system permissions was used for knowledge 

analysis. This model is based on training a set of 10,000 

programs, including 5,000 malicious programs and 5,000 

malware. The malware is from the Drebin [17] dataset. 

Benign apps are among the top 500 apps in each category on 

the Google Play Store. In this regard, the declared accuracy 

in the test set is 94.62%. 

MAMA technique detects executable Android malicious 

apps. The manifest file of Android applications is analyzed 

to extract application properties and permissions using the 

"Android Asset Packaging" tool. The extracted features are 

used to build a supervised machine-learning classifier to 

identify malicious programs [17]. 

In another study [18], DT, Naive Bayes, and Random 

Forest Machine Learning algorithms were used to detect 

Android attacks. An information acquisition method was 

used to select important features. The random forest 

algorithm achieved 94.6% accuracy. 

In [19], they presented an ensemble hybrid model called 

SEDMDroid to detect sophisticated Android malware. The 

proposed framework used bootstrap and principal 

component analysis (PCA) to ensure diversity and generate 

random feature subspaces. Multilayer Perception (MLP) and 

Support Vector Machine (SVM) are trained to learn 

additional information that provides the final prediction. The 

test is performed on official Android apps, and the malicious 

apps are collected from the VirusShare repository. 

SEDMDroid achieved a recognition accuracy of 94.92%. 

3. Methodology 

This section describes the proposed methodology, data 

set, and preparation steps for the data set and the proposed 

model of this study. 

3.1. Method: XGBoost 

Extreme gradient boosting (XGB, also known as 

XGBoost) is another gradient boosting-based boosting 

method that uses more accurate approximations to generate 

the best prediction model (among gradient boosting models) 

[20]. The most apparent advantage of XGBoost, among 

other gradient-boosting methods, is its speed. The essence of 

this model is the construction of several CART trees. The 

model predicts each tree separately and finally combines the 

prediction results of each tree to achieve the final prediction 

value. Several weak learners are constructed by taking the 

decision tree as the base learner, and then the model is 

continuously trained in the gradient descent direction. Its 

structure is shown in Figure 1. 

 
Figure 1. Schematic image of the XGBoost model 

 

3.2. Proposed Method 

This section explains the dataset in the first part, and then 

the proposed model for detecting Android malware is 

presented in the second part. 
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3.2.1. Data Collection 

In this section, the data set used in this research is 

reviewed. The desired data set is collected from 3 different 

data repositories. These 3 data repositories are: 

1. BazarFarsi: This dataset contains 294 samples 

downloaded from Cafe Bazar. 

2. LibreAV: This dataset contains 8315 samples. 

3. OmniDroid: This dataset contains 21992 instances 

of AndroPyTool [21]. 

3.2.1.1 The Initial Raw Dataset 

30601 primary raw data were considered to build the 

proposed model. Table 1 shows the names of the data 

warehouses used in the model-building process. The initial 

number of data related to each data warehouse is given in the 

Number column. Our data is APK. 

 

Table 1. Initial raw dataset 

Total of each 

Type 
Number 

Type 
Repository 

name 

4598 
294 Benign BazarFarsi 
4304 Benign LibreAV 

21992 21992 Benign/Malware OmniDroid 

4011 4011 Malware LibreAV 

 

3.2.2. Data Preprocessing 

This section deals with data preprocessing and preparing 

them for training the artificial intelligence model. The 

preprocessing step performs the following steps for both 

Benign and Malware categories. 

1. First, the VirusTotal site checks the entire data set, 

which includes 30,601 samples, to ensure the 

accuracy of each sample's labeling. 

2. If noisy data is detected in the previous step, it is 

removed from the data set in this step. 

3. In this step, features are extracted by AndroPyTool 

Framework, and if a sample is broken and cannot 

be extracted, it is removed from the dataset. 

4. Finally, the data set required for training the 

artificial intelligence model is obtained from the 

difference of the total data with the noisy and 

corrupted data. 

3.2.2.1 The Final Dataset 

Finally, in Table 2, you can see the dataset used to build 

the artificial intelligence model of this research. The number 

of each category is written according to the name of the 

corresponding data warehouse. 

 

Table 2. The final data set of this study 

Repository name Type Number Total of each Type 

BazarFarsi Benign 280 

13784 LibreAV Benign 4017 

OmniDroid Benign 9487 

LibreAV Malware 2750 
11770 

OmniDroid Malware 9020 

 

As seen in Table 2, our data set includes a total of 25554 

samples. 

3.2.2.2 Feature Extraction 

In this article, AndroPyTool is used to extract static 

features. There are many tools for extracting features from 

Android applications. However, a program that can group 

individually obtained results to build a complete dataset is 

rare, which is the motivation behind using AndroPyTool. 

AndroPyTool is an integration framework developed in 

Python that aims to extract diverse features from various 

Android applications. It embeds the most widely used 

Android malware analysis tools, inspects the source code, 

and retrieves behavioral information when the sample is run 

in a controlled environment. The tool provides a detailed 

report for each application analyzed, including a large set of 

features. In this study, 1000 features were considered for 

training the artificial intelligence model. 

3.2.3. Modeling 

Machine learning methods are generally divided into 

descriptive and predictive categories [22]. In this article, 7 

different methods are used to predict malware. In the 

discussion section, the accuracy of these algorithms is 

compared with each other. Also, this section will explain the 

XGBoost model designed to achieve the highest accuracy. 

3.2.3.1 Proposed Model 

This section presents the proposed model of this study to 

predict Android malware. Figure 2 shows the proposed 

model. The XGBoost algorithm was used to implement the 

proposed model in an attempt to detect malware on Android 

devices using a machine learning approach. The proposed 

model is tuned to perform effectively on mobile devices with 

limited computing resources. Experiments 
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show that the proposed model works efficiently and 

effectively on low-end mobile devices. With the proposed 

model, it is possible to scan all the programs installed on the 

device quickly. 

 

 
Figure 2. The proposed model of this study 

4. Discussion 

The dataset used in this study includes 25554 different 

samples. 1000 essential features have been selected from 

each sample's Permissions and Intents features. 

AndroPyTool was used to extract each sample's 

characteristics. The Pycharm tool and Python programming 

language were also used to conduct experiments. 

In this study, we considered 80% of the data for model 

training and the other 20% for testing. Also, in this research, 

eleven different algorithms were used to predict the label of 

the dataset. Then, four criteria- accuracy, correctness, recall, 

and F1 score- were used to compare and evaluate the 

performance of each algorithm. Algorithms used in this 

study are Linear Regression, Decision Tree, KNN, Gradient 

Boosting, XGBoost, Support Vector Machine, and Logistic 

Regression. 

In Table 3 and Figure 3, you can see the results of 

comparing the used algorithms. 

 

Table 3. Check the performance of the algorithms used using the data set used 

Algorithms Accuracy Precision Recall F1-Score 

Linear Regression 91.6416115453998% 94.8855989232840% 87.4689826302729% 91.0264686894770% 

Decision Tree 91.4010823812387% 90.9765142150803% 91.3151364764268% 91.1455108359133% 

KNN 93.2651834034876% 94.6015424164524% 91.3151364764268% 92.9292929292929% 

Gradient Boosting 92.6638604930847% 94.4155844155844% 90.1985111662531% 92.2588832487309% 

XGBoost 94.9869031870114% 95.4468710089399% 92.4317617866005% 93.7696664568911% 

SVM 92.3631990378833% 95.2063914780292% 88.7096774193548% 91.8432883750802% 

Logistic Regression 93.0246542393265% 95.3947368421052% 89.9503722084367% 92.5925925925926% 

 

 

 
Figure 3. Performance review of the used algorithms using the data set of this study. 
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According to the results obtained above, the XGBoost 

model (proposed model), KNN, and Logistic Regression 

have the best performance compared to other algorithms. 

These three models perform well in all four evaluation 

criteria. 

Because the XGBoost model had the best performance, 

this model is considered the final model. In the following, 

the proposed model of this research was examined with the 

proposed model of study [19]. A static malware detection 

framework called SEDMDroid was proposed in a 2020 study 

by Zhu et al. Their study used 2 different data sets to evaluate 

the model. Their first dataset consisted of 2000 real 

programs; the second dataset was MUDFLOW [23] with 

17000 samples. Also, this framework is a two-layer 

architecture, including group learning. They considered 

MLP to be the base learners and SVM to be the output 

model. Finally, their proposed model achieved 89.07% 

accuracy for the first data set and 94.92% accuracy for the 

second data set. 

After comparing this study's proposed model with the 

model proposed by Zhu et al., it can be seen that our 

proposed model uses a larger data set, performs better, and 

achieves an accuracy of 94.98%. 

5. Conclusions 

Smartphones are becoming increasingly popular and are 

a lucrative target for hackers due to their vulnerability to 

security breaches. Android is an open gateway for attackers 

who exploit it with malicious apps and take advantage of the 

system's security flaws. ML-based solutions have been 

proposed and implemented to address this critical issue. 

Another reason that makes using ML algorithms important 

in malware detection is their ability to detect zero-day 

attacks. ML-based approaches can at least detect previously 

unseen malware and, therefore, have the potential to prevent 

zero-day attacks. 

In this work, we focused on the static analysis of Android 

applications. We intensively tested 25,554 Android apps and 

1,000 features to detect Android app malware using 7 

machine learning algorithms, among which XGBoost had 

the best performance. This showed the competitive results of 

the proposed model compared to existing approaches. Our 

approach provides an overall accuracy of 94.98%, precision 

of 95.44%, F1-score of 93.76%, and recall rate of 92.43%. 

In future work, we will focus on analyzing more features of 

Android apps, and larger datasets will be considered. Also, 

as a future work, this research can pay attention to other 

artificial intelligence algorithms, such as neural networks, 

which are widely used today. 
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