
Article history:
Received 1 March 2024
Revised 29 April 2024
Accepted 02 June 2024
Published online 01 July 2024

Artificial Intelligence Applications

 And Innovations Vol. 1 No. 3 (2024)

Android Malware Detection by XGBoost Algorithm

Sana. Nazarinezhad1* , Nafise. Khosrojerdi2 , Ahmad Reza. Shafieesabet3

1 Master in Information Technology Engineering, Department of Information Technology, Faculty of Industrial Engineering, K. N. Toosi

University of Technology, Tehran, Iran
2 Master in Artificial Intelligence, Faculty of Computer Engineering, Malek Ashtar University of Technology, Tehran, Iran
3 Master in Information Technology Engineering, Department of Information Technology, Foulad Institute of Technology,

Isfahan, Iran

* Corresponding author email address: sana.nazari1995@gmail.com

A r t i c l e I n f o A B S T R A C T

Article type:

Original Research

How to cite this article:

Nazarinezhad, S., Khosrojerdi, N.,

& Shafieesabet, A. R. (2024).

Android Malware Detection by

XGBoost Algorithm. Artificial

Intelligence Applications and

Innovations, 1(3), 31-37.

https://doi.org/10.61838/jaiai.1.3.4

© 2024 the authors. This is an open

access article under the terms of the

Creative Commons Attribution-

NonCommercial 4.0 International (CC

BY-NC 4.0) License.

Today, smartphones are prevalent for personal and corporate use and have become

the new personal computer due to their portability, ease of use, and functionality

(such as video conferencing, Internet browsing, e-mail, continuous wireless and data

connectivity, worldwide map location services, and countless mobile applications

such as banking applications). On the other hand, we store many sensitive and private

information daily on smart devices. This information is of interest to malicious

writers who are developing malware to steal information from mobile devices.

Unfortunately, the open source and widespread adoption of the Android operating

system has made it the most targeted of the four popular mobile platforms by malware

writers. Many researchers have tried to identify malware using program signatures,

which have been successful to some extent. However, the signature cannot

effectively identify new and unknown malware. For this reason, in this article, we

propose a method that designs a machine-learning model for Android malware

detection based on the properties of Permissions, Intents APKs. In this study, we

evaluated more than 25,000 Android samples belonging to malware and trusted

samples. Experimental results show the effectiveness of the proposed method by

obtaining 96.27% accuracy.

Keywords: Malware detection, Artificial Intelligence, Machine Learning, Anti-malware,

Android, XGBoost, Ensemble Classifier.

1. Introduction

he use of smartphones has increased exponentially in

recent years. According to Statista statistics, in 2023,

7.33 billion people will use mobile phones, and 72% will use

Android smartphones [1, 2]. In the current era, smartphones

and the Internet of Things (IoT) are used everywhere as the

main media of information communication and T

https://doi.org/10.61838/jaiai.1.3.4
http://creativecommons.org/licenses/by-nc/4.0
http://creativecommons.org/licenses/by-nc/4.0
https://crossmark.crossref.org/dialog/?doi=10.61838/jaiai.1.3.4
http://creativecommons.org/licenses/by-nc/4.0

 Nazarinezhad et al. Artificial Intelligence Applications and Innovations 1:3 (2024) 31-37

32

entertainment [3]. Mobile devices are becoming a part of our

daily lives and are used even more than conventional

computer systems such as personal computers [4].

Despite significant and continuous improvements in

cyber security mechanisms, malware remains one of the

most severe threats in cyberspace. According to the McAfee

report, the total number of malware samples in 2020

gradually increased to about 1.5 billion. Malware

everywhere erodes cyberspace and creates sub-branches

such as mobile malware, MacOS malware, Internet of

Things malware, and Coin Miner malware, which cause

substantial financial damage to individuals and industries

[5]. According to the latest report published by the computer

security company G Data, a new malware is found in online

repositories every 8 seconds. In this way, 11,000 malware

are produced daily [6].

The Android platform providers have proposed several

security measures to prevent the installation of malware, the

most important of which is the Android licensing system.

Each application must explicitly request the user perform

some task on the device during installation, such as sending

SMS, etc. [7]. However, many users tend to blindly grant

permissions to unknown applications, undermining the

licensing system's purpose.

To solve this problem, many research methods have been

proposed to analyze and identify Android malware before

installation. Traditionally, anti-malware software, whether

for Android, Windows, or other operating systems, identifies

malware by its signature. Examples of file signatures include

file encryption hashes and byte patterns. Then, malware is

identified by extracting the program's signature and

checking it against a known database [8]. Any slight change

in the signature can cause the anti-malware not to detect the

malware. These small changes can be introduced by

replacing a few lines of code, directives, or even keywords.

This limitation prevents the detection of existing malware

and malware based on zero-day attacks. Periodic anti-

malware updates are insufficient to keep up with this

constant stream of new malware. At any given time, anti-

malware software will not be aware of thousands, if not

more, of malware. As a potential solution to this problem,

artificial intelligence (AI) methods such as machine learning

(ML) and deep learning (DL) can be used to provide anti-

malware products with the ability to identify new malware

based on common patterns in existing malware.

According to the mentioned cases, this article aims to

present a machine learning model using a static analysis

method to identify Android malware with the ability to

identify zero-day malware. The rest of this paper is

organized as follows: Related works are introduced in

Section 2. An overview of the architecture is presented in

Section 3. The implementation and evaluation of our

proposed method are discussed in detail in Section 4 and

Section 5, respectively. Section 6 concludes the paper.

2. Literature Review

Due to the number of Android devices and the security

risks associated with Android malware, the field of Android

malware detection using machine learning has grown

significantly in recent years. Researchers have proposed

supervised, unsupervised, and deep-learning strategies to

detect Android malware [9].

Support vector machines (SVM) and decision trees, two

examples of supervised learning techniques, have been

widely used in Android malware detection [10]. In order to

build a model capable of distinguishing between legitimate

and malicious Android apps, these methods rely on labeled

training data.

Android malware detection also uses unsupervised

learning techniques like clustering and dimensionality

reduction. These techniques can detect patterns in data that

may indicate malware and do not require labeled training

data [11].

However, using machine learning techniques to detect

Android malware is the subject of this survey. In the

following, we examine some of the research done in this

field.

The authors in [12], PUMA (Permission to Use for

Malware Detection on Android), presented a new strategy

for detecting malware on Android devices. The authors

claim that malware's excessive use of permissions can serve

as an identification signature for malicious programs.

PUMA uses an ML-based algorithm that trains a classifier

from a dataset (more than 4000 APKs containing malicious

and malware) of malware and benign applications. The

permissions requested for the application and their usage

patterns are the characteristics used for classification. The

authors stated that PUMA detects malware with over 90%

accuracy and a low false positive rate.

The malware detection approach in [13] uses a feature-

based learning framework where permissions and API calls

are used as features. This work uses machine learning

methods such as SVM, decision trees, and bundling

 Nazarinezhad et al. Artificial Intelligence Applications and Innovations 1:3 (2024) 31-37

33

approaches and achieves an accuracy of 96.88%. The work

in [13] used a static analysis technique.

Jung et al. [14] used a static analysis technique and

presented an approach to selecting a set of API calls to detect

malicious Android apps. This approach selects two sets of

API calls: a benign API list and a malicious API list, which

contain the most commonly called APIs in benign and

malicious applications, respectively. This is a very simple

method to determine whether a new program is benign or

malicious, but it gives a high accuracy of nearly 90%.

[15] proposed an SVM-based malware detection scheme

using suspicious API calls and dangerous authorization as

features. This feature data trains the SVM classifier, which

is then used to identify unknown malware in the future. The

test results showed that the proposed plan's accuracy is 81%

without taking into account the risky licenses and 86% with

the licenses taken into account.

In [16], a static detection method based on 151 trained

Android system permissions was used for knowledge

analysis. This model is based on training a set of 10,000

programs, including 5,000 malicious programs and 5,000

malware. The malware is from the Drebin [17] dataset.

Benign apps are among the top 500 apps in each category on

the Google Play Store. In this regard, the declared accuracy

in the test set is 94.62%.

MAMA technique detects executable Android malicious

apps. The manifest file of Android applications is analyzed

to extract application properties and permissions using the

"Android Asset Packaging" tool. The extracted features are

used to build a supervised machine-learning classifier to

identify malicious programs [17].

In another study [18], DT, Naive Bayes, and Random

Forest Machine Learning algorithms were used to detect

Android attacks. An information acquisition method was

used to select important features. The random forest

algorithm achieved 94.6% accuracy.

In [19], they presented an ensemble hybrid model called

SEDMDroid to detect sophisticated Android malware. The

proposed framework used bootstrap and principal

component analysis (PCA) to ensure diversity and generate

random feature subspaces. Multilayer Perception (MLP) and

Support Vector Machine (SVM) are trained to learn

additional information that provides the final prediction. The

test is performed on official Android apps, and the malicious

apps are collected from the VirusShare repository.

SEDMDroid achieved a recognition accuracy of 94.92%.

3. Methodology

This section describes the proposed methodology, data

set, and preparation steps for the data set and the proposed

model of this study.

3.1. Method: XGBoost

Extreme gradient boosting (XGB, also known as

XGBoost) is another gradient boosting-based boosting

method that uses more accurate approximations to generate

the best prediction model (among gradient boosting models)

[20]. The most apparent advantage of XGBoost, among

other gradient-boosting methods, is its speed. The essence of

this model is the construction of several CART trees. The

model predicts each tree separately and finally combines the

prediction results of each tree to achieve the final prediction

value. Several weak learners are constructed by taking the

decision tree as the base learner, and then the model is

continuously trained in the gradient descent direction. Its

structure is shown in Figure 1.

Figure 1. Schematic image of the XGBoost model

3.2. Proposed Method

This section explains the dataset in the first part, and then

the proposed model for detecting Android malware is

presented in the second part.

 Nazarinezhad et al. Artificial Intelligence Applications and Innovations 1:3 (2024) 31-37

34

3.2.1. Data Collection

In this section, the data set used in this research is

reviewed. The desired data set is collected from 3 different

data repositories. These 3 data repositories are:

1. BazarFarsi: This dataset contains 294 samples

downloaded from Cafe Bazar.

2. LibreAV: This dataset contains 8315 samples.

3. OmniDroid: This dataset contains 21992 instances

of AndroPyTool [21].

3.2.1.1 The Initial Raw Dataset

30601 primary raw data were considered to build the

proposed model. Table 1 shows the names of the data

warehouses used in the model-building process. The initial

number of data related to each data warehouse is given in the

Number column. Our data is APK.

Table 1. Initial raw dataset

Total of each

Type
Number

Type
Repository

name

4598
294 Benign BazarFarsi
4304 Benign LibreAV

21992 21992 Benign/Malware OmniDroid

4011 4011 Malware LibreAV

3.2.2. Data Preprocessing

This section deals with data preprocessing and preparing

them for training the artificial intelligence model. The

preprocessing step performs the following steps for both

Benign and Malware categories.

1. First, the VirusTotal site checks the entire data set,

which includes 30,601 samples, to ensure the

accuracy of each sample's labeling.

2. If noisy data is detected in the previous step, it is

removed from the data set in this step.

3. In this step, features are extracted by AndroPyTool

Framework, and if a sample is broken and cannot

be extracted, it is removed from the dataset.

4. Finally, the data set required for training the

artificial intelligence model is obtained from the

difference of the total data with the noisy and

corrupted data.

3.2.2.1 The Final Dataset

Finally, in Table 2, you can see the dataset used to build

the artificial intelligence model of this research. The number

of each category is written according to the name of the

corresponding data warehouse.

Table 2. The final data set of this study

Repository name Type Number Total of each Type

BazarFarsi Benign 280

13784 LibreAV Benign 4017

OmniDroid Benign 9487

LibreAV Malware 2750
11770

OmniDroid Malware 9020

As seen in Table 2, our data set includes a total of 25554

samples.

3.2.2.2 Feature Extraction

In this article, AndroPyTool is used to extract static

features. There are many tools for extracting features from

Android applications. However, a program that can group

individually obtained results to build a complete dataset is

rare, which is the motivation behind using AndroPyTool.

AndroPyTool is an integration framework developed in

Python that aims to extract diverse features from various

Android applications. It embeds the most widely used

Android malware analysis tools, inspects the source code,

and retrieves behavioral information when the sample is run

in a controlled environment. The tool provides a detailed

report for each application analyzed, including a large set of

features. In this study, 1000 features were considered for

training the artificial intelligence model.

3.2.3. Modeling

Machine learning methods are generally divided into

descriptive and predictive categories [22]. In this article, 7

different methods are used to predict malware. In the

discussion section, the accuracy of these algorithms is

compared with each other. Also, this section will explain the

XGBoost model designed to achieve the highest accuracy.

3.2.3.1 Proposed Model

This section presents the proposed model of this study to

predict Android malware. Figure 2 shows the proposed

model. The XGBoost algorithm was used to implement the

proposed model in an attempt to detect malware on Android

devices using a machine learning approach. The proposed

model is tuned to perform effectively on mobile devices with

limited computing resources. Experiments

 Nazarinezhad et al. Artificial Intelligence Applications and Innovations 1:3 (2024) 31-37

35

show that the proposed model works efficiently and

effectively on low-end mobile devices. With the proposed

model, it is possible to scan all the programs installed on the

device quickly.

Figure 2. The proposed model of this study

4. Discussion

The dataset used in this study includes 25554 different

samples. 1000 essential features have been selected from

each sample's Permissions and Intents features.

AndroPyTool was used to extract each sample's

characteristics. The Pycharm tool and Python programming

language were also used to conduct experiments.

In this study, we considered 80% of the data for model

training and the other 20% for testing. Also, in this research,

eleven different algorithms were used to predict the label of

the dataset. Then, four criteria- accuracy, correctness, recall,

and F1 score- were used to compare and evaluate the

performance of each algorithm. Algorithms used in this

study are Linear Regression, Decision Tree, KNN, Gradient

Boosting, XGBoost, Support Vector Machine, and Logistic

Regression.

In Table 3 and Figure 3, you can see the results of

comparing the used algorithms.

Table 3. Check the performance of the algorithms used using the data set used

Algorithms Accuracy Precision Recall F1-Score

Linear Regression 91.6416115453998% 94.8855989232840% 87.4689826302729% 91.0264686894770%

Decision Tree 91.4010823812387% 90.9765142150803% 91.3151364764268% 91.1455108359133%

KNN 93.2651834034876% 94.6015424164524% 91.3151364764268% 92.9292929292929%

Gradient Boosting 92.6638604930847% 94.4155844155844% 90.1985111662531% 92.2588832487309%

XGBoost 94.9869031870114% 95.4468710089399% 92.4317617866005% 93.7696664568911%

SVM 92.3631990378833% 95.2063914780292% 88.7096774193548% 91.8432883750802%

Logistic Regression 93.0246542393265% 95.3947368421052% 89.9503722084367% 92.5925925925926%

Figure 3. Performance review of the used algorithms using the data set of this study.

80.00%

82.00%

84.00%

86.00%

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

Linear
Regression

Decision Tree KNN Gradient
Boosting

XGBoost SVM Logistic
Regression

Comparing the Performance of Different Machine Learning Algorithms

Accuracy Precision Recall F1-Score

Best Performance

 Nazarinezhad et al. Artificial Intelligence Applications and Innovations 1:3 (2024) 31-37

36

According to the results obtained above, the XGBoost

model (proposed model), KNN, and Logistic Regression

have the best performance compared to other algorithms.

These three models perform well in all four evaluation

criteria.

Because the XGBoost model had the best performance,

this model is considered the final model. In the following,

the proposed model of this research was examined with the

proposed model of study [19]. A static malware detection

framework called SEDMDroid was proposed in a 2020 study

by Zhu et al. Their study used 2 different data sets to evaluate

the model. Their first dataset consisted of 2000 real

programs; the second dataset was MUDFLOW [23] with

17000 samples. Also, this framework is a two-layer

architecture, including group learning. They considered

MLP to be the base learners and SVM to be the output

model. Finally, their proposed model achieved 89.07%

accuracy for the first data set and 94.92% accuracy for the

second data set.

After comparing this study's proposed model with the

model proposed by Zhu et al., it can be seen that our

proposed model uses a larger data set, performs better, and

achieves an accuracy of 94.98%.

5. Conclusions

Smartphones are becoming increasingly popular and are

a lucrative target for hackers due to their vulnerability to

security breaches. Android is an open gateway for attackers

who exploit it with malicious apps and take advantage of the

system's security flaws. ML-based solutions have been

proposed and implemented to address this critical issue.

Another reason that makes using ML algorithms important

in malware detection is their ability to detect zero-day

attacks. ML-based approaches can at least detect previously

unseen malware and, therefore, have the potential to prevent

zero-day attacks.

In this work, we focused on the static analysis of Android

applications. We intensively tested 25,554 Android apps and

1,000 features to detect Android app malware using 7

machine learning algorithms, among which XGBoost had

the best performance. This showed the competitive results of

the proposed model compared to existing approaches. Our

approach provides an overall accuracy of 94.98%, precision

of 95.44%, F1-score of 93.76%, and recall rate of 92.43%.

In future work, we will focus on analyzing more features of

Android apps, and larger datasets will be considered. Also,

as a future work, this research can pay attention to other

artificial intelligence algorithms, such as neural networks,

which are widely used today.

Authors’ Contributions

HM contributed to design, AAK and MB native RL

algorithm, HM, AAK, MB bio-statistical analysis; MB

participated in most of the study steps. AAK used RL in

exploring drug combinations. All authors have read and

approved the content of the manuscript.

Declaration

In order to correct and improve the academic writing of

our paper, we have used the language model ChatGPT.

Transparency Statement

Data are available for research purposes upon reasonable

request to the corresponding author.

Acknowledgments

We would like to express our gratitude to all individuals

helped us to do the project.

Declaration of Interest

The authors declare that they have no conflict of interest.

The authors also declare that they have no known competing

financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

Funding

According to the authors, this article has no financial

support.

Ethical Considerations

The study placed a high emphasis on ethical

considerations. Informed consent obtained from all

participants, ensuring they are fully aware of the nature of

the study and their role in it. Confidentiality strictly

maintained, with data anonymized to protect individual

privacy. The study adhered to the ethical guidelines for

research with human subjects as outlined in the Declaration

of Helsinki.

References

 Nazarinezhad et al. Artificial Intelligence Applications and Innovations 1:3 (2024) 31-37

37

[1] A. Muzaffar, H. R. Hassen, H. Zantout, and M. A. Lones, "A

Comprehensive Investigation of Feature and Model

Importance in Android Malware Detection," 2023. [Online].

Available: https://doi.org/10.48550/arXiv.2301.12778.

[2] S. O'Dea, "Forecast number of mobile users worldwide from

2020 to 2025," 2020. [Online]. Available:

https://www.statista.com/statistics/218984/number-of-global-

mobile-users-since-2010/.

[3] I. U. Haq, T. A. Khan, A. Akhunzada, and X. Liu, "MalDroid:

Secure DL‐enabled intelligent malware detection framework,"

IET Communications, vol. 16, no. 10, pp. 1160-1171, 2022,

doi: 10.1049/cmu2.12265.

[4] A. Fournier, F. El Khoury, and S. Pierre, "Classification

method for malware detection on android devices," in

Proceedings of the Future Technologies Conference (FTC)

2020, Volume 3: Springer International Publishing, 2021, pp.

810-829.

[5] Y. Liu, C. Tantithamthavorn, L. Li, and Y. Liu, "Explainable

AI for Android Malware Detection: Towards Understanding

Why the Models Perform So Well?," in 2022 IEEE 33rd

International Symposium on Software Reliability Engineering

(ISSRE), 2022, pp. 169-180, doi:

10.1109/ISSRE55969.2022.00026.

[6] K. Beckert-Plewka, H. Gierow, V. Haake, and S. Karpenstein,

"G DATA Mobile Malware Report: Harmful Android Apps

Every Eight Seconds," 2020.

[7] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K.

Rieck, "Drebin: Effective and explainable detection of android

malware in your pocket," in NDSS, 2014, vol. 14, pp. 23-26,

doi: 10.14722/ndss.2014.23247.

[8] B. Yu, Y. Fang, Q. Yang, Y. Tang, and L. Liu, "A survey of

malware behavior description and analysis," Frontiers of

Information Technology & Electronic Engineering, vol. 19,

pp. 583-603, 2018, doi: 10.1631/FITEE.1601745.

[9] Z. Liu, R. Wang, N. Japkowicz, D. Tang, W. Zhang, and J.

Zhao, "Research on unsupervised feature learning for android

malware detection based on restricted Boltzmann machines,"

Future Generation Computer Systems, vol. 120, pp. 91-108,

2021, doi: 10.1016/j.future.2021.02.015.

[10] M. Yang, X. Chen, Y. Luo, and H. Zhang, "An Android

Malware Detection Model Based on DT‐SVM," Security and

Communication Networks, vol. 2020, no. 1, p. 8841233, 2020,

doi: 10.1155/2020/8841233.

[11] M. N. AlJarrah, Q. M. Yaseen, and A. M. Mustafa, "A context-

aware android malware detection approach using machine

learning," Information, vol. 13, no. 12, p. 563, 2022, doi:

10.3390/info13120563.

[12] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, P. G.

Bringas, and G. Álvarez, "Puma: Permission usage to detect

malware in android," in International Joint Conference

CISIS'12-ICEUTE 12-SOCO 12 Special Sessions: Springer

Berlin Heidelberg, 2013, pp. 289-298.

[13] N. Peiravian and X. Zhu, "Machine learning for android

malware detection using permission and API calls," in 2013

IEEE 25th International Conference on Tools with Artificial

Intelligence, 2013, pp. 300-305, doi: 10.1109/ICTAI.2013.53.

[14] J. Jung, K. Lim, B. Kim, S. J. Cho, S. Han, and K. Suh,

"Detecting malicious android apps using the popularity and

relations of APIs," in 2019 IEEE Second International

Conference on Artificial Intelligence and Knowledge

Engineering (AIKE), 2019, pp. 309-312, doi:

10.1109/AIKE.2019.00062.

[15] W. Li, J. Ge, and G. Dai, "Detecting malware for android

platform: An SVM-based approach," in 2015 IEEE 2nd

International Conference on Cyber Security and Cloud

Computing, 2015, pp. 464-469, doi:

10.1109/CSCloud.2015.50.

[16] A. Fournier, F. El Khoury, and S. Pierre, "A client/server

malware detection model based on machine learning for

android devices," IoT, vol. 2, no. 3, pp. 355-374, 2021, doi:

10.3390/iot2030019.

[17] E. J. Alqahtani, R. Zagrouba, and A. Almuhaideb, "A survey

on android malware detection techniques using machine

learning algorithms," in 2019 Sixth International Conference

on Software Defined Systems (SDS), 2019, pp. 110-117, doi:

10.1109/SDS.2019.8768729.

[18] J. Toldinas, A. Venčkauskas, R. Damaševičius, Š.

Grigaliūnas, N. Morkevičius, and E. Baranauskas, "A novel

approach for network intrusion detection using multistage

deep learning image recognition," Electronics, vol. 10, no. 15,

p. 1854, 2021, doi: 10.3390/electronics10151854.

[19] H. Zhu, Y. Li, R. Li, J. Li, Z. You, and H. Song, "SEDMDroid:

An enhanced stacking ensemble framework for Android

malware detection," IEEE Transactions on Network Science

and Engineering, vol. 8, no. 2, pp. 984-994, 2020, doi:

10.1109/TNSE.2020.2996379.

[20] J. H. Friedman, "Greedy function approximation: a gradient

boosting machine," Annals of Statistics, pp. 1189-1232, 2001,

doi: 10.1214/aos/1013203451.

[21] A. Martín, R. Lara-Cabrera, and D. Camacho, "Android

malware detection through hybrid features fusion and

ensemble classifiers: The AndroPyTool framework and the

OmniDroid dataset," Information Fusion, vol. 52, pp. 128-

142, 2019, doi: 10.1016/j.inffus.2018.12.006.

[22] S. Nazari Nezhad, M. H. Zahedi, and E. Farahani, "Detecting

diseases in medical prescriptions using data mining methods,"

BioData Mining, vol. 15, no. 1, p. 29, 2022, doi:

10.1186/s13040-022-00314-w.

[23] V. Avdiienko et al., "Mining apps for abnormal usage of

sensitive data," in 2015 IEEE/ACM 37th IEEE International

Conference on Software Engineering, 2015, vol. 1, pp. 426-

436, doi: 10.1109/ICSE.2015.61.

https://doi.org/10.48550/arXiv.2301.12778
https://www.statista.com/statistics/218984/number-of-global-mobile-users-since-2010/
https://www.statista.com/statistics/218984/number-of-global-mobile-users-since-2010/

